• Title/Summary/Keyword: flexural tests

Search Result 836, Processing Time 0.025 seconds

Relationship between Barcol hardness and flexural modulus degradation of composite sheets subjected to flexural fatigue

  • Sakin, Raif
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1531-1548
    • /
    • 2015
  • The aim of this study is to investigate the relationship between Barcol hardness (H) and flexural modulus (E) degradation of composite sheets subjected to flexural fatigue. The resin transfer molding (RTM) method was used to produce 3-mm-thick composite sheets with fiber volume fraction of 44%. The composite sheets were subjected to flexural fatigue tests and Barcol scale hardness measurements. After these tests, the stiffness and hardness degradations were investigated in the composite sheets that failed after around one million cycles (stage III). Flexural modulus degradation values were in the range of 0.41-0.42 with the corresponding measured hardness degradation values in the range of 0.25-0.32 for the all fatigued composite sheets. Thus, a 25% reduction in the initial hardness and a 41% reduction in the initial flexural modulus can be taken as the failure criteria. The results showed that a reasonably well-defined relationship between Barcol hardness and flexural modulus degradation in the distance range.

System Identification on Flexure of SFRC (SFRC 휨거동에의 system identification)

  • 이차돈
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.99-106
    • /
    • 1991
  • Flexural load-deflection relationships for steel fiber reinforced concrete(SFRC) are dependent on the tensile and compressive constitutive behaviors of the material, which may be refined in the presence of strain gradients under flexural loads. Considering the relatively large amount of flexural test results available for steel fiber reinforced concrete, and the relative ease of conducting such tests in comparison with direct tension tests, it seems to be important to obtain basic information on the tensile constitutive behavior of SFRC from the result of flexural tests. For this purpose "System Identification" technique was used for interpretating the flexural test data and it was successful in obtaining optimum sets of main parameters which explain the tensile constitutive behavior of SFRC under flexure.

  • PDF

An Experimental Study on the Flexural Strength of Fiber Reinforced Concrete Structures

  • Chai, Won-Kyu
    • International Journal of Safety
    • /
    • v.11 no.2
    • /
    • pp.26-28
    • /
    • 2012
  • In this thesis, fracture tests were carried out in order to investigate the flexural strength behavior of FRC(fiber reinforced concrete) structures. FRC beams were used in the tests, the initial crack load and the ultimate load of the beams were observed under the static loading. According to the results, the ultimate loads increase with the fiber content, and these tendency is clear in the specimens with large fiber aspect ratio. From the results of the regression analysis, practical formulae for predicting the flexural strength of FRC were suggested.

Resonances of Unconstrained Compressive, Shear and Flexural Waves in Free-Free Cylinder Specimens (자유단 공시체에 있어서 압축파, 전단파, 휨파의 공진특성)

  • Park, Byoung-Sun;Joh, Sung-Ho;Lee, Sang-Heon;Kang, Tae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.582-589
    • /
    • 2006
  • Shear wane velocity is important property for grasping the dynamic characteristics of material. It is has been used in various fields such as non-destructive testings of structures, seismic analysis of geotechnical structures and maintenance of concrete structure, and etc. Usually, shear wave velocities of rock cores and concrete cylinders are determined by free-free resonance tests, Shear wave measurement in free-free resonance tests is not straightforward, as compared with rod wave and flexural wane measurements. In This study, a new technique using resonance features of flexural and shear waves were proposed in which the nodal points for the fundamental mode of flexural waves were employed to generate and measure the shear waves with the flexural waves minimized. The real measurements for aluminum cylinders proved validity and reliability of the proposed algorithm. In addition to the proposed algorithm, the effects of material properties on elastic-wave velocities in resonance measurements were also studied. In summary, a new framework of the resonance measurements for shear-wave velocity determination was established, based on the results of this thesis.

  • PDF

Flexural behavior of carbon nanotube-modified epoxy/basalt composites

  • Kim, Man-Tae;Rhee, Kyong-Yop
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.177-179
    • /
    • 2011
  • The use of carbon nanotubes (CNTs) as a reinforcing material in a polymer matrix has increased in various industries. In this study, the flexural behavior of CNT-modified epoxy/basalt (CNT/epoxy/basalt) composites is investigated. The effects of CNT modification with silane on the flexural properties of CNT/epoxy/basalt composites were also examined. Flexural tests were performed using epoxy/basalt, oxidized CNT/epoxy/basalt, and silanized CNT/epoxy/basalt multi-scale composites. After the flexural tests, the fracture surfaces of the specimens were examined via scanning electron microscopy (SEM) to investigate the fracture mechanisms of the CNT/epoxy/basalt multi-scale composites with respect to the CNT modification process. The flexural properties of the epoxy/basalt composites were improved by the addition of CNTs. The flexural modulus and strength of the silane-treated CNT/epoxy/basalt multi-scale composites increased by approximately 54% and 34%, respectively, compared to those of epoxy/basalt composites. A SEM examination of the fracture surfaces revealed that the improvement in the flexural properties of the silane-treated CNT/epoxy/basalt multi-scale composites could be attributed to the improved dispersion of the CNTs in the epoxy.

Flexural Fatigue Behavior of High Performance Fiber Reinforced Cement Mortar (고인성 섬유보강 시멘트 모르터의 휨피로거동)

  • Lim, Nam-Hyoung;Lee, Chin-Ok;Jang, Sun-Jae;Ryu, Hyo-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.11-18
    • /
    • 2007
  • A laboratory investigation was conducted to characterize the flexural fatigue behavior of high performance fiber reinforced cement mortar. Five specimens for statics flexural test and fourteen specimens for the flexural fatigue test were made based on the fiber mixing ratio. Static flexural tests were firstly performed to obtain magnitudes of static failure loads and stress levels before flexural fatigue tests. The flexural fatigue behaviors were investigated based on the stress level and fiber mixing ratio. Also, the equations for the interrelation of the flexural fatigue stress levels with the number at loading cycle were proposed.

A Experimental Study on the Flexural Characteristics (GFRP로 보강된 RC보의 휨특성에 관한 실험적 연구)

  • 심종성;김규선;이석무;김경민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.559-565
    • /
    • 1998
  • Flexural tests on 2.4m long reinforced concrete beams with epoxy-bonded GFRP plates are reported in these tests. The selected experimental variables are strengthening plate length, plate thickness, plate width and the method of anchoring the plate ends. The effects of these variables in overall behavior are discussed. The results generally indicate that the flexural strength of strengthened beams is increased. The ductile behavior of tested beams in inversely proportional to the plate thickness, plate width. The use of an U-jacket plate provided a proper anchorage system and improved the ductility of beams.

  • PDF

An Experimental Study on the Flexural Behavior of RC beams Strengthened by CRFP-Grid (탄소격자섬유로 보강한 RC보의 휨거동에 관한 실험적 연구)

  • 조병완;김영진;태기호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.845-850
    • /
    • 1998
  • Flexural tests on 3.0m reinfored concrete beams with epoxy and anchor bolt bonded CFRF-Grid reported in these tests. The selected experimental variables are concrete compressive strength, strengthening length and strengthening method. The effects of these variables in overall behavior are discussed. The results generally shown that the main flexural mode of strengthened beams is separation failure. The strengthening of the chipping by the tensile bar is really necessary in order to prevent CFRP-Grid from rip-off failure.

  • PDF

A Study on the Flexural Behavior of Steel Fiber Reinforced Concrete Structures (강섬유보강 콘크리트의 휨거동에 관한 연구)

  • 장동일;채원규;이명구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.169-174
    • /
    • 1990
  • Fracture tests were carried out in order to investigate the flexural behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Sixty three SFRC beams were used in the tests, the fracture mode, the relationships between loading and strains, and the relationships between loading and mid-span deflections of the beams were observed under the three point bending loading. From the test results, the effects of steel fiber contents and a/h ratio on the concrete flexural behavior were studied, and the stress intensity factors and the flexural strength of SFRC beams were calculated. According to the results of regression analysis, predicting formulas for the flexural strength of SFRC beams are also suggested.

  • PDF

Fatigue Failure Characteristics of Steel Fiber Reinforced Concrete Considering Cumulative Damage (누적손상을 고려한 강섬유보강 콘크리트의 피로파괴 특성)

  • 김동호;홍창우;이주형;이봉학
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.117-126
    • /
    • 2002
  • Concrete containing discontinuous discrete steel fiber in a normal concrete is called steel fiber reinforced concrete(SFRC). Tensile as well as flexural strengths of concrete could be substantially increased by introducing closely spaced fibers which delay the onset of tension cracks and increase the tension strength of cracks. However, many properties of SFRC have not been investigated, especially properties on repeated loadings. Thus, the purposes of this dissertation is to study the flexural fatigue characteristics of SFRC considering cumulative damage. A series of experimental tests such as compressive strength, splitting tensile strength, flexural strength, flexural fatigue, and two steps stress level fatigue were conducted to clarify the basic properties and fatigue-related properties of SFRC. The main experimental variables were steel fiber fraction (0, 0.4, 0.7, 1, 1.5%), aspect ratio (60, 83). The principal results obtained through this study are as follows: The results of flexural fatigue tests showed that the flexural fatigue life of SFRC is approxmately 65% of ultimate strength, while that of plain is less than 58%. Especially, the behavior of flexural fatigue life shows excellent performance at 1.0% of steel-fiber volume fraction. The cumulative damage test of high-low two stress levels is within the value of 0.6 ∼ 1.1, while that of low-high stress steps is within the value of 2.4 ∼ 4.0.