• 제목/요약/키워드: flexural performance test

검색결과 591건 처리시간 0.02초

고인성 시멘트 복합체에 의해 보수된 보 부재의 내하력 평가 (The Evaluation of Flexural Performance of Beam of Repair as High Toughness Cementitious Composites)

  • 류금성;고경택;박정준;안기홍;윤필용;김진수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.625-628
    • /
    • 2006
  • In this study, the beam which is repaired as high toughness cementitious composites evaluated on flexural performance. As for the test results, it was found that high toughness performance of beams of the repair as high toughness cementitious composites showed more better than the existing repair method and demonstrated about 95% semi-reinforcement to compare with reinforcement of carbon fiber sheets of one layer without interface and brittle failure. Therefore, appling on using PVA fiber reinforced high toughness cementitious composites, the repaired concrete structures can be increased to flexural performance.

  • PDF

강판 보강 집성재 보의 휨성능 평가 연구 (Evaluation on Flexural Performance of Steel Plate Reinforced GLT Beams)

  • 박금성;이상섭;곽명근
    • 한국공간구조학회논문집
    • /
    • 제20권2호
    • /
    • pp.39-49
    • /
    • 2020
  • In this study, we will develop a hybrid cross-sectional shape of steel inserted type glued-laminated timber that can improve the strength of structural glued-laminated timber and maximize the ductility by using steel plate with excellent tensile and deformation ability. A total of three specimens were fabricated and the flexural performance test was carried out to evaluate the structural performance of the steel inserted type glued-laminated timber. In order to compare the effect of steel inserted glued-laminated timber, one structural glued-laminated timber test specimen composed of pure wood was manufactured. In addition, in order to evaluate the adhesion performance of the steel inserted, one each of a screw joint test specimen and a polyurethane joint test specimen was prepared. As a result, all the specimens showed the initial crack in the finger joint near the force point. This has been shown to be a cause of crack diffusion and strength degradation. The use of finger joints in the maximum moment section is considered to affect the strength and ductility of the glued-laminated timber beam. Polyurethane-adhesive steel inserted glued-laminated timber showed fully-composite behavior with little horizontal separation between the steel plate and glued-laminated timber until the maximum load was reached. This method has been shown to exhibit sufficient retention bending performance.

Fatigue behavior of hybrid GFRP-concrete bridge decks under sagging moment

  • Xin, Haohui;Liu, Yuqing;He, Jun;Fan, Haifeng;Zhang, Youyou
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.925-946
    • /
    • 2015
  • This paper presents a new cost-effective hybrid GFRP-Concrete deck system that the GFRP panel serves as both tensile reinforcement and stay-in-place form. In order to understand the fatigue behavior of such hybrid deck, fatigue test on a full-scale specimen under sagging moment was conducted, and a series of static tests were also carried out after certain repeated loading cycles. The fatigue test results indicated that such hybrid deck has a good fatigue performance even after 3.1 million repeated loading cycles. A three-dimensional finite element model of the hybrid deck was established based on experimental work. The results from finite element analyses are in good agreement with those from the tests. In addition, flexural fatigue analysis considering the reduction in flexural stiffness and modulus under cyclic loading was carried out. The predicted flexural strength agreed well with the analytical strength from finite element simulation, and the calculated fatigue failure cycle was consistent with the result based on related S-N curve and finite element analyses. However, the flexural fatigue analytical results tended to be conservative compared to the tested results in safety side. The presented overall investigation may provide reference for the design and construction of such hybrid deck system.

UHPCC 휨부재 제작 시 타설 중 충전방향에 따른 휨인장거동의 변화 (Comparison of Flexural Tensile Behaviors with Different Filling Directions in Producing UHPCC Flexural Member)

  • 강수태;류금성;고경택;김선용
    • 대한토목학회논문집
    • /
    • 제34권2호
    • /
    • pp.447-455
    • /
    • 2014
  • 본 연구는 UHPCC (Ultra High Performance Cementitious Composites)에서 섬유배열 유도의 효율성을 평가하기 위한 연구의 일환으로, 흐름특성을 달리한 다양한 방법으로 UHPCC 부재를 제작하여 휨거동의 변화를 비교하고, 섬유 배열특성과의 상관관계를 정성적으로 분석하였다. 실험을 통해 섬유배열 유도방법에 따라 휨거동의 차이가 크게 나타남을 확인하였다. 일반적인 휨실험체 제작방법으로, 섬유가 주인장방향으로 배열되도록 유도한 경우가 다른 방법으로 제작된 휨실험체에 비해 더 높은 휨인장강도와 낮은 변동성을 보였다. 따라서 실제 UHPCC 부재에서의 재료의 휨인장강도는 실험실 수준에서 측정한 휨인장강도와 비교하여 크게 다를 수 있고, 변동성도 더 크게 나타날 수 있음을 반드시 고려해야 할 것이다. 한편, UHPCC의 유동흐름에 따른 섬유의 배열특성의 변화를 흐름의 종류 및 경계면 효과를 고려하여 정성적으로 예측하였으며, 이러한 예측결과는 실험에서 여러 가지 형태로 유도된 유동흐름에 따른 휨인장거동의 변화를 잘 설명하였다.

Investigations on the tensile strength of high-performance fiber reinforced concrete using statistical methods

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • 제3권6호
    • /
    • pp.389-400
    • /
    • 2006
  • This paper presents the investigations towards developing a better understanding on the contribution of steel fibers on the tensile strength of high-performance fiber reinforced concrete (HPFRC). An extensive experimentation was carried out with w/cm ratios ranging from 0.25 to 0.40 and fiber content ranging from zero to 1.5 percent with an aspect ratio of 80. For 32 concrete mixes, flexural and splitting tensile strengths were determined at 28 days. The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Based on the test results, mathematical models were developed using statistical methods to predict 28-day flexural and splitting tensile strengths of HPFRC for a wide range of w/cm ratios. The expressions, being developed with strength ratios and not with absolute values of strengths and are applicable to wide range of w/cm ratio and different sizes/shapes of specimens. Relationship between flexural and splitting tensile strengths has been developed using regression analysis and absolute variation of strength values obtained was within 3.85 percent. To examine the validity of the proposed model, the experimental results of previous researchers were compared with the values predicted by the model.

철근 보강 고강도 폴리머 콘크리트 보의 휨특성 (Flexural Performance of Reinforced Polymer Concrete Beams with High Strength)

  • 연규석;김관호;김기락
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.136-141
    • /
    • 1998
  • While a little research has been peformed on flexural behavior of reinforced polymer concrete (RPC)beams with the compressive strength lower than 900kg/$\textrm{cm}^2$ vary little exists in conjunction with the behavior of RPC 1,000kg/$\textrm{cm}^2$ or higher in compressive strength. In this paper the flexural performance of high strength polymer concrete beams with 1,450kg/$\textrm{cm}^2$ in compressive strength was evaluated. The unsaturated polyester resin was used to make polymer concrete as binder. The beams with stirrup singly/doubly were tested to examine the effect of tensile reinforcement ratio. As test results, reinforcement ratio increased with the increase moment strength, decreased with ultimate deflection, ductility index.

  • PDF

리브 형상을 갖는 반단면 프리캐스트 판넬의 휨 안전성 평가 연구 (Study on Safety Evaluation of the Half-Depth Precast Deck with RC Rib Pannel for the Flexural Behavior)

  • 황훈희
    • 한국안전학회지
    • /
    • 제34권4호
    • /
    • pp.76-84
    • /
    • 2019
  • The precast pannels are used as formwork in Half-depth precast deck systems. Therefore, it has many advantages, including safe and convenient construction and reduced construction period compared to cast-in-place construction method. In half-depth precast deck systems, the bonding of precast pannels to cast-in place concrete is very important. To enhance the performance of half-depth precast deck system, it is necessary to improve the composite efficiency of the interface or increase the stiffness of the precast pannel to reduce deformation or stress on the interface. In this study, a flexural test of half-depth precast deck system was performed, in which the shear connecting reinforcement was applied to increase the bonding performance at the interface, and the rib shape precast panels were applied to improve stiffness. In addition, the safety and serviceability of these systems were evaluated. Test results show that all of specimens have the required flexural strength under the ultimate strength limit design. It was also evaluated to have sufficient safety for the serviceability of deflection and crack under the serviceability limit design.

탄소섬유보강판으로 보강된 철근콘크리트 보의 휨성능 개선에 관한 연구 (The Study on Improvement of Flexural Performance of RC Beam Strengthened with CFRP Plate)

  • 한상훈;최만용;조홍동;박중열;황선일;김경식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.399-404
    • /
    • 2002
  • This paper presents the results cf research on improved flexural performance cf reinforced concrete beams strengthened with bonded carbon fiber reinforced polymer plate. Recently, strengthening technique with CFRP plate were almost carried out by external bonding. But current external bonding technique cf CFRP plates may result in debonding CFRP plate. Therefore, this study proposes a strengthening method that prevents or delays debonding between CFRP plates and concrete and at the same time improves the strength. For this test, there were only 14 test beams manufactured and failure load, deflection, strains and modes cf failure have been examined Test variables included the type cf strengthening, steel ratio and strengthening length, and the effects according to each test variables were analyzed. The experimental results show that the strength and stiffness cf the beam significantly increased between 34.55 and 116.51% and the increase cf the more lead-carrying capacity than the control beams.

  • PDF

Investigation on mechanical performance of flat steel plate-lightweight aggregate concrete hollow composite slab

  • Yang, Yong;Chen, Yang;Yang, Ye;Zeng, Susheng
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.329-340
    • /
    • 2019
  • An innovated type of the flat steel plate-lightweight aggregate concrete hollow composite slab was presented in this paper. This kind of the slab is composed of flat steel plate and the lightweight aggregate concrete slab, which were interfaced with a set of perfobond shear connectors (PBL shear connectors) with circular hollow structural sections (CHSS) and the shear stud connectors. Five specimens were tested under static monotonic loading. In the test, the influence of shear span/height ratios and arrangements of CHSS on bending capacity and flexural rigidity of the composite slabs were investigated. Based on the test results, the crack patterns, failure modes, the bending moment-curvature curves as well as the strains of the flat steel plate and the concrete were focused and analyzed. The test results showed that the flat steel plate was fully connected to the lightweight aggregate concrete slab and no obvious slippage was observed between the steel plate and the concrete, and the composite slabs performed well in terms of bending capacity, flexural rigidity and ductility. It was further shown that all of the specimens failed in bending failure mode regardless of the shear span/height ratios and the arrangement of CHSS. Moreover, the plane-section assumption was proved to be valid, and the calculated formulas for predicting the bending capacity and the flexural rigidity of the composite slabs were proposed on the basis of the experimental results.

Seismic performance of steel plate shear walls with variable column flexural stiffness

  • Curkovic, Ivan;Skejic, Davor;Dzeba, Ivica
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.1-18
    • /
    • 2019
  • In the present study, the behavior of steel plate shear walls (SPSW) with variable column flexural stiffness is experimentally and numerically investigated. Altogether six one-bay one-story specimens, three moment resisting frames (MRFs) and three SPSWs, were designed, fabricated and tested. Column flexural stiffness of the first specimen pair (one MRF and one SPSW) corresponded to the value required by the design codes, while for the second and third pair it was reduced by 18% and 36%, respectively. The quasi-static cyclic test result indicate that SPSW with reduced column flexural stiffness have satisfactory performance up to 4% story drift ratio, allow development of the tension field over the entire infill panel, and cause negligible column "pull-in" deformation which indicates that prescribed minimal column flexural stiffness value, according to AISC 341-10, might be conservative. In addition, finite element (FE) pushover simulations using shell elements were developed. Such FE models can predict SPSW cyclic behavior reasonably well and can be used to conduct numerical parametric analyses. It should be mentioned that these FE models were not able to reproduce column "pull-in" deformation indicating the need for further development of FE simulations with cyclic load introduction which will be part of another paper.