• Title/Summary/Keyword: flexural failure

Search Result 861, Processing Time 0.022 seconds

Flexural Performance of Reinforced Concrete Beams with Recycled Aggregates Suffering from Sustained Load (지속하중을 경험한 철근콘크리트 보의 골재 종류에 따른 휨거동 특성)

  • Ji, Sang-Kyu;Yun, Hyun-Do;Kim, Sun-Woo;Lee, Eon-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.135-143
    • /
    • 2007
  • This paper presents results of an experimental study designed to investigate the effect of sustained load on the flexural performance of reinforced recycled aggregate concrete beams. In this experimental program, three beams with recycled aggregate replacement percentages(natural 100%, recycled coarse aggregate 100%, recycled fine aggregate 50%) were tested up to failure after sustained loading($0.5M_n$) for one year. The experimental results showed that reinforced concrete beams using recycled aggregate(water absorption : 1.86~3.64%) concrete showed the same flexural performance as that of natural aggregate concrete beam. Current the ACI code underestimated experimental obtained ultimate flexural strength of beams irrespective of usage of recycled aggregates.

Effect of repair methods and materials on the flexural strength of 3D-printed denture base resin

  • Viotto, Hamile Emanuella do Carmo;Silva, Marcela Dantas Dias;Nunes, Thais Soares Bezerra Santos;Coelho, Sabrina Romao Goncalves;Pero, Ana Carolina
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.5
    • /
    • pp.305-314
    • /
    • 2022
  • PURPOSE. The aim of this study was to evaluate the flexural strength of a 3D-printed denture base resin (Cosmos Denture), after different immediate repair techniques with surface treatments and thermocycling. MATERIALS AND METHODS. Rectangular 3D-printed denture base resin (Cosmos Denture) specimens (N = 130) were thermocycled (5,000 cycles, 5℃ and 55℃) before and after the different repair techniques (n = 10 per group) using an autopolymerized acrylic resin (Jet, J) or a hard relining resin (Soft Confort, SC), and different surface treatments: Jet resin monomer for 180 s (MMA), blasting with aluminum oxide (JAT) or erbium: yttrium-aluminum-garnet laser (L). The control group were intact specimens. A three-point flexural strength test was performed, and data (MPa) were analyzed by ANOVA and Games-Howell post hoc test (α = 0.05). Each failure was observed and classified through stereomicroscope images and the surface treatments were viewed by scanning electron microscope (SEM). RESULTS. Control group showed the highest mean of flexural strength, statistically different from the other groups (P < .001), followed by MMA+J group. The groups with L treatment were statistically similar to the MMA groups (P > .05). The JAT+J group was better than the SC and JAT+SC groups (P < .05), but similar to the other groups (P > .05). Adhesive failures were most observed in JAT groups, especially when repaired with SC. The SEM images showed surface changes for all treatments, except JAT alone. CONCLUSION. Denture bases fabricated with 3D-printed resin should be preferably repaired with MMA+J. SC and JAT+SC showed the worst results. Blasting impaired the adhesion of the SC resin.

Multi-Scale finite element investigations into the flexural behavior of lightweight concrete beams partially reinforced with steel fiber

  • Esmaeili, Jamshid;Ghaffarinia, Mahdi
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.393-405
    • /
    • 2022
  • Lightweight concrete is a superior material due to its light weight and high strength. There however remain significant lacunae in engineering knowledge with regards to shear failure of lightweight fiber reinforced concrete beams. The main aim of the present study is to investigate the optimum usage of steel fibers in lightweight fiber reinforced concrete (LWFRC). Multi-scale finite element model calibrated with experimental results is developed to study the effect of steel fibers on the mechanical properties of LWFRC beams. To decrease the amount of steel fibers, it is preferred to reinforce only the middle section of the LWFRC beams, where the flexural stresses are higher. For numerical simulation, a multi-scale finite element model was developed. The cement matrix was modeled as homogeneous and uniform material and both steel fibers and lightweight coarse aggregates were randomly distributed within the matrix. Considering more realistic assumptions, the bonding between fibers and cement matrix was considered with the Cohesive Zone Model (CZM) and its parameters were determined using the model update method. Furthermore, conformity of Load-Crack Mouth Opening Displacement (CMOD) curves obtained from numerical modeling and experimental test results of notched beams under center-point loading tests were investigated. Validating the finite element model results with experimental tests, the effects of fibers' volume fraction, and the length of the reinforced middle section, on flexural and residual strengths of LWFRC, were studied. Results indicate that using steel fibers in a specified length of the concrete beam with high flexural stresses, and considerable savings can be achieved in using steel fibers. Reducing the length of the reinforced middle section from 50 to 30 cm in specimens containing 10 kg/m3 of steel fibers, resulting in a considerable decrease of the used steel fibers by four times, whereas only a 7% reduction in bearing capacity was observed. Therefore, determining an appropriate length of the reinforced middle section is an essential parameter in reducing fibers, usage leading to more affordable construction costs.

Influence of Water Infiltration and Flexural Strength Change with Glazing Treatment of Dental Porcelain (치과도재의 Glazing 여부에 따른 수분침투 정도와 굽힘강도에 미치는 영향)

  • Lee, Ju-Hee;Lee, Chae-Hyun;Song, Jeong-Hwan
    • Journal of dental hygiene science
    • /
    • v.17 no.4
    • /
    • pp.358-367
    • /
    • 2017
  • The purpose of this study was to evaluate the influence of water infiltration and flexural strength changes in dental porcelain with glazing treatment. The block specimens were prepared as experimental materials, using feldspar type commercial dental porcelain; then, these were fired at $940^{\circ}C$ for 1 minute. The fired specimens were polished with a dimension of $40{\times}5.5{\times}5mm$. The specimens were distributed to two experimental groups: with and without glazing treatment specimens (n=5), and they were immersed in a solution of pH 7 for 3, 7, and 20 days at $40^{\circ}C$ after fabrication. To evaluate the flexural strength changes with water infiltration treatment in specimens with and without glazing, the 3-point flexural test was performed, using a universal testing machine until failure occurred. Starting powder and fired specimens consisted of amorphous and leucite crystalline phase. The Vickers hardness of fired specimens was more than 1.6 times higher than that of the enamel of natural teeth. According to porosimeter results, the specimens without glazing treatment exhibited a porosity of about 14.7%, whereas the glazed specimens exhibited the lowest porosity at about 1.1%. The average flexural strength of glazed specimens was higher than the flexural strength of specimens without glazing treatment (p<0.05). The flexural strength of all specimens with and without glazing treatment deteriorated with accelerated aging in the solution. In addition, significant differences between these two treatment groups were observed in all of the specimens treated at various water infiltration periods (p<0.05). The exposure of internal pores and micro-cracks in the surface due to polishing of the fired specimens influenced mechanical behaviors. Especially, the flexural strength in specimens without glazing treatment has shown significant degradation with the infiltration of water. Therefore, this study suggests that glazing processes can improve mechanical properties of dental porcelain.

Flexural Performance of PHC Piles with Infilled concrete and Longitudinal Reinforcing Bars (속채움 콘크리트 및 길이방향 철근으로 보강된 PHC 파일의 휨성능)

  • Han, Sun-Jin;Lee, Jungmin;Kim, Min-Seok;Kim, Jae-Hyun;Kim, Kang Su;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.77-84
    • /
    • 2021
  • In this study, flexural tests of prestressed high strength spun concrete (PHC) piles reinforced with infilled concrete and longitudinal rebars were conducted, where the longitudinal rebar ratio and the presence of sludge formed on the inner surface of PHC pile were set as key test variables. A total of six PHC pile specimens were manufactured, and their flexural behaviors including failure mode, crack pattern, longitudinal strain distribution in a section and end slip between external PHC pile and infilled concrete were measured and discussed in detail. The test results revealed that the flexural stiffness and strength increased as the longitudinal rebar ratio became larger, and that the sludge formed on the inner surface of PHC pile did not show any detrimental effect on the flexural performance. In addition to the experimental approach, this study presents a nonlinear flexural analysis model considering compatibility conditions and strain and stress distributions of the PHC piles and infilled concrete. The rationality of the nonlinear flexural analysis model was verified by comparing it with test results, and it appeared that the proposed model well evaluated the flexural behavior of PHC piles reinforced with infilled concrete and longitudinal rebars with a good accuracy.

Punching Shear Strength of Prestressed Precast Concrete Deck (프리스트레스를 도입한 프리캐스트 콘크리트 교량바닥판의 펀칭전단강도)

  • 정철헌;류형근;정운용;김인규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.653-659
    • /
    • 2002
  • Recently, the failure case of the bridge deck slabs have been increasing in Korea and it was observed that the failure modes of most deck slabs collapsed were not caused by flexural moment but by local punching shear. The main reason of the failures was the punching shear failure of deck slabs under heavy truck traffics. This paper presents test results obtained from punching shear tests performed on prestressed precast deck specimens. Cracking patterns, failure modes, deflections, and stresses are included as well as discussion of the punching shear strength observed during punching shear tests. Static lest specimens had punching shear failures at loads much higher than predicted by the current codes. Tests results indicate that current code provisions appear to be conservative.

Effects of loading history on seismic performance of SRC T-shaped column, Part I: Loading along web

  • Wang, J.;Liu, Z.Q.;Xue, J.Y.;Hu, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.193-201
    • /
    • 2018
  • This paper describes an experimental study on the seismic performance of steel reinforced concrete (SRC) T-shaped columns. The lateral loads were applied along the web of the column with different loading histories, such as monotonic loading, mixed loading of variable amplitude cyclic loading and monotonic loading, constant amplitude cyclic loading and variable amplitude cyclic loading. The failure modes, load-displacement curves, characteristic loads and displacements, ductility, strength and stiffness degradations and energy dissipation capacity of the column were analyzed. The effects of loading history on the seismic performance were focused on. The test results show that the specimens behaved differently in the aspects of the failure mode subject to different loading history, although all the failure modes can be summarized as flexural failure. The hysteretic loops of specimens are plump, and minimum values of the failure drift angles and ductility coefficients are 1/24 and 4.64, respectively, which reflect good seismic performance of SRC T-shaped column. With the increasing numbers of loading cycles, the column reveals lower bearing capacity and ductility. The strength and stiffness of the column with variable amplitude cyclic loading degrades more rapidly than that with constant amplitude cyclic loading, and the total cumulative dissipated energy of the former is less.

Comparison on the Failure Mechanism of Punching Shear in the Reinforced Concrete (철근 콘크리트의 뚫림전단 파괴메카니즘에 과한 비교)

  • 이주나;연규원;이호준;박찬수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.533-538
    • /
    • 2000
  • In R.C. flat slab system, a brittle punching failure is a very fatal problem. But there is no generally well-defined answer to the problem and there are wide differences in current practical design codes. therefore, in this study, the factors affecting to punching failure mechanism have been studied to find out the punching shear behavior in R.C. flat slabs by comparing other investigations and practical design codes. Therefore, In this study, the factors affecting to punching failure mechanism have been studied to find out the punching shear behavior in R.C. flat slabs by comparing other investigations and practical design codes. The conclusions in this study are summarized as follows; 1) The factors affecting to punching shear are concrete strength ($f_\alpha$), ratio of column side length to slab depth (c/d), ratio of distance from column center to radial contraflexure (l/d), yield strength of steel ($f_y$), flexural reinforcement ratio ($\rho$) and size effects. 2) It is shown that th use of $\surd{f_{ck}}$in applying($f_\alpha$ to punching shear strength estimation may be more sensitive in high concrete strength. 3) The effects of l/d, ($f_y$, size are no clear in the punching failure mechanism, so in the future, it should be investigated with the effects of various composed load.

  • PDF

Premature Failure Load of Reinforced Concrete Beams with Flexural Strengthened by Steel Plates (강판으로 휨 보강된 철근콘크리트 보의 조기파괴하중 산정)

  • Kim, Haeng-Jun;Kim, Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.283-292
    • /
    • 2005
  • This paper predicts premature failure load of reinforced concrete beams by epoxy-boned partially steel plates. A parametric study is conducted to estimate premature failure load of beams such as with or without stirrups, unplated length ratio, steel and reinforcement ratio, shear span to depth ratio of reinforcement beam. By results of finite element analysis, it turned out that the unplated length played a dominant role in partially plated beams but reinforcement ratio and shear span to depth ratio effected the premature failure load. The approximate expression with regard to combined design variables is compared with experimental results. It shows closely agreement.

Experimental investigations and FE simulation of exterior BCJs retrofitted with CFRP fabric

  • Halahla, Abdulsamee M.;Rahman, Muhammad K.;Al-Gadhib, Ali H.;Al-Osta, Mohammed A.;Baluch, Mohammed H.
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.337-354
    • /
    • 2019
  • This paper presents the results of experimental and numerical studies conducted to investigate the behavior of exterior reinforced concrete beam column joints (BCJ) strengthened by using carbon fiber reinforced polymer (CFRP) sheets. Twelve reinforced concrete beam-column joints (BCJ) were tested in an experimental program by simulating the joints in seismically deficient old buildings. One group of BCJs was designed to fail in flexure at the BCJ interface, and the second group was designed to ensure joint shear failure. One specimen in each set was -retrofitted with CFRP sheet wrapped diagonally around the joint. The specimens were subjected to both monotonic and cyclic loading up to failure. 3D finite element simulation of the BCJs tested in the experimental program was carried out using the software ABAQUS, adopting the damage plasticity model (CDP) for concrete. The experimental results showed that retrofitting of the shear deficient, BCJs by CFRP sheets enhanced the strength and ductility and the failure mode changed from shear failure in the joints to the desired flexural failure in the beam segment. The FE simulation of BCJs showed a good agreement with the experimental results, which indicated that the CDP model could be used to model the problems of the monotonic and cyclic loading of beam-column reinforced concrete joints.