• Title/Summary/Keyword: flexural damage

검색결과 260건 처리시간 0.021초

Damage localization and quantification in beams from slope discontinuities in static deflections

  • Ma, Qiaoyu;Solis, Mario
    • Smart Structures and Systems
    • /
    • 제22권3호
    • /
    • pp.291-302
    • /
    • 2018
  • This paper presents a flexibility based method for damage identification from static measurements in beam-type structures. The response of the beam at the Damaged State is decomposed into the response at the Reference State plus the response at an Incremental State, which represents the effect of damage. The damage is localized by detecting slope discontinuities in the deflection of the structure at the Incremental State. A denoising filtering technique is applied to reduce the effect of experimental noise. The extent of the damage is estimated through comparing the experimental flexural stiffness of the damaged cross-sections with the corresponding values provided by analytical models of cracked beams. The paper illustrates the method by showing a numerical example with two cracks and an experimental case study of a simply supported steel beam with one artificially introduced notch type crack at three damage levels. A Digital Image Correlation system was used to accurately measure the deflections of the beam at a dense measurement grid under a set of point loads. The results indicate that the method can successfully detect and quantify a small damage from the experimental data.

음향방출 특성을 이용한 콘크리트 부재종류 및 하중상태에 따른 균열손상 연구 (Identification of Damage Characteristics for the Cracking of Concrete Strcuture Using Acoustic Emission)

  • 오병환;권일범;김응재;김광수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.543-546
    • /
    • 1999
  • The purpose of the present study is to identify the damage characteristics of concrete structures due to cracking by employing the acoustic emission techniques. A comprehensive experimental study has been done. The cracking damages under tensile and flexural loadings have been identified and the bond damage between steel and concrete have been also characterized. It is seen that the amplitudes and energy level of AE events is found to be smaller for bond cracking damages and larger for tensile cracking damages. The characteristic equations of the AE events for various cracking damages have been proposed based on the present test data. The internal microcracks are progressively developed ahead of a visible actual crack and the present study clearly exhibits thses damage mechanism for various types of cracking in concrete. The present study provides very useful data which can be used to identify the various types of cracking damages in concrete structures. This will allow very efficient maintenance of concrete structures through monitoring of internal cracking based on acoustic emission.

  • PDF

비선형요구내력스펙트럼을 이용한 철근콘크리트건물의 지진손상도 평가법 - Part I. 지진손상도 평가법 개념 - (A New Methodology of Earthquake Damage Evaluation for R/C Buildings Based on Non-linear Required Strength Spectrum - Part I. Concept of Earthquake Damage Evaluation -)

  • 이강석;위정두;전경주;최윤철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.111-112
    • /
    • 2010
  • 본 연구에서는 비선형 지진응답해석을 이용하여 유도된 전단 및 휨파괴형 부재가 혼합된 철근콘크리트 건물의 비선형 요구내력스펙트럼을 이용한 지진손상도 평가법을 제안하였다. Part I에서는 지진 손상도 평가법, 즉 비선형 요구내력스펙트럼을 수식화하여 대상건물의 특정 연성률별로 지진입력수준과 내진성능잔존률(R)을 산정하여 구조물의 손상정도를 평가하는 지진손상도 평가법의 개념을 나타낸다.

  • PDF

Identification of reinforced concrete beam-like structures subjected to distributed damage from experimental static measurements

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Basu, D.
    • Computers and Concrete
    • /
    • 제5권1호
    • /
    • pp.37-60
    • /
    • 2008
  • Structural health monitoring of existing infrastructure is currently an important field of research, where elaborate experimental programs and advanced analytical methods are used in identifying the current state of health of critical and important structures. The paper outlines two methods of system identification of beam-like reinforced concrete structures representing bridges, through static measurements, in a distributed damage scenario. The first one is similar to the stiffness method, re-cast and the second one to flexibility method. A least square error (LSE) based solution method is used for the estimation of flexural rigidities and damages of simply supported, cantilever and propped cantilever beam from the measured deformation values. The performance of both methods in the presence of measurement errors is demonstrated. An experiment on an un-symmetrically damaged simply supported reinforced concrete beam is used to validate the developed method. A method for damage prognosis is demonstrated using a generalized, indeterminate, propped cantilever beam.

State-space formulation for simultaneous identification of both damage and input force from response sensitivity

  • Lu, Z.R.;Huang, M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • 제8권2호
    • /
    • pp.157-172
    • /
    • 2011
  • A new method for both local damage(s) identification and input excitation force identification of beam structures is presented using the dynamic response sensitivity-based finite element model updating method. The state-space approach is used to calculate both the structural dynamic responses and the responses sensitivities with respect to structural physical parameters such as elemental flexural rigidity and with respect to the force parameters as well. The sensitivities of displacement and acceleration responses with respect to structural physical parameters are calculated in time domain and compared to those by using Newmark method in the forward analysis. In the inverse analysis, both the input excitation force and the local damage are identified from only several acceleration measurements. Local damages and the input excitation force are identified in a gradient-based model updating method based on dynamic response sensitivity. Both computation simulations and the laboratory work illustrate the effectiveness and robustness of the proposed method.

손상영역을 이용한 철근 콘크리트 보의 손상평가 (Damage Assessment of Reinforced Concrete Beams using Damage-area concept)

  • 노원균;심창수;김기봉;김현호;홍창국
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.647-650
    • /
    • 2004
  • This paper deals with the damage assessment of the concrete beam using Damage-area concept and the modulus of elasticity reduction of the beam was evaluated. Simply supported concrete beams were loaded at the mid-span. When the displacements from the tests were increased more than $10\%$ of the initial values, flexural cracks occured. Judging from the observed cracks, damaged area of the beams were assumed and the modulus of elasticity reduction using the smeared-cracking concept was estimated to minimize the error between the test results and analytical results. Main parameters for the assessment were height of the crack area, length of the crack area, position of the crack area and the modulus of elastic reduction ratio. In each stage, damaged elements and their stiffness reduction were estimated to minimized the error.

  • PDF

Seismic response and damage development analyses of an RC structural wall building using macro-element

  • Hemsas, Miloud;Elachachi, Sidi-Mohammed;Breysse, Denys
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.447-470
    • /
    • 2014
  • Numerical simulation of the non-linear behavior of (RC) structural walls subjected to severe earthquake ground motions requires a reliable modeling approach that includes important material characteristics and behavioral response features. The objective of this paper is to optimize a simplified method for the assessment of the seismic response and damage development analyses of an RC structural wall building using macro-element model. The first stage of this study investigates effectiveness and ability of the macro-element model in predicting the flexural nonlinear response of the specimen based on previous experimental test results conducted in UCLA. The sensitivity of the predicted wall responses to changes in model parameters is also assessed. The macro-element model is next used to examine the dynamic behavior of the structural wall building-all the way from elastic behavior to global instability, by applying an approximate Incremental Dynamic Analysis (IDA), based on Uncoupled Modal Response History Analysis (UMRHA), setting up nonlinear single degree of freedom systems. Finally, the identification of the global stiffness decrease as a function of a damage variable is carried out by means of this simplified methodology. Responses are compared at various locations on the structural wall by conducting static and dynamic pushover analyses for accurate estimation of seismic performance of the structure using macro-element model. Results obtained with the numerical model for rectangular wall cross sections compare favorably with experimental responses for flexural capacity, stiffness, and deformability. Overall, the model is qualified for safety assessment and design of earthquake resistant structures with structural walls.

Seismic damage detection of a reinforced concrete structure by finite element model updating

  • Yu, Eunjong;Chung, Lan
    • Smart Structures and Systems
    • /
    • 제9권3호
    • /
    • pp.253-271
    • /
    • 2012
  • Finite element (FE) model updating is a useful tool for global damage detection technique, which identifies the damage of the structure using measured vibration data. This paper presents the application of a finite element model updating method to detect the damage of a small-scale reinforced concrete building structure using measured acceleration data from shaking table tests. An iterative FE model updating strategy using the least-squares solution based on sensitivity of frequency response functions and natural frequencies was provided. In addition, a side constraint to mitigate numerical difficulties associated with ill-conditioning was described. The test structure was subjected to six El Centro 1942 ground motion histories with different Peak Ground Accelerations (PGA) ranging from 0.06 g to 0.5 g, and analytical models corresponding to each stage of the shaking were obtained using the model updating method. Flexural stiffness values of the structural members were chosen as the updating parameters. In model updating at each stage of shaking, the initial values of the parameter were set to those obtained from the previous stage. Severity of damage at each stage of shaking was determined from the change of the updated stiffness values. Results indicated that larger reductions in stiffness values occurred at the slab members than at the wall members, and this was consistent with the observed damage pattern of the test structure.

Structural damage identification based on genetically trained ANNs in beams

  • Li, Peng-Hui;Zhu, Hong-Ping;Luo, Hui;Weng, Shun
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.227-244
    • /
    • 2015
  • This study develops a two stage procedure to identify the structural damage based on the optimized artificial neural networks. Initially, the modal strain energy index (MSEI) is established to extract the damaged elements and to reduce the computational time. Then the genetic algorithm (GA) and artificial neural networks (ANNs) are combined to detect the damage severity. The input of the network is modal strain energy index and the output is the flexural stiffness of the beam elements. The principal component analysis (PCA) is utilized to reduce the input variants of the neural network. By using the genetic algorithm to optimize the parameters, the ANNs can significantly improve the accuracy and convergence of the damage identification. The influence of noise on damage identification results is also studied. The simulation and experiment on beam structures shows that the adaptive parameter selection neural network can identify the damage location and severity of beam structures with high accuracy.

Experimental study on acoustic emission characteristics of reinforced concrete components

  • Gu, Aijun;Luo, Ying;Xu, Baiqiang
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.67-79
    • /
    • 2015
  • Acoustic emission analysis is an effective technique for monitoring the evolution of damage in a structure. An experimental analysis on a set of reinforced concrete beams under flexural loading was carried out. A mixed AE analysis method which used both parameter-based and signal-based techniques was presented to characterize and identify different failure mechanisms of damage, where the signal-based analysis was performed by using the Hilbert-Huang transform. The maximum instantaneous energy of typical damage events and the corresponding frequency characteristics were established, which provided a quantitative assessment of reinforced concrete beam using AE technique. In the bending tests, a "pitch-catch" system was mounted on a steel bar to assess bonding state of the steel bar in concrete. To better understand the AE behavior of bond-slip damage between steel bar and concrete, a special bond-slip test called pullout test was also performed. The results provided the basis of quantitative AE to identify both failure mechanisms and level of damages of civil engineering structures.