• Title/Summary/Keyword: flexural damage

검색결과 260건 처리시간 0.026초

Degradation reliability modeling of plain concrete for pavement under flexural fatigue loading

  • Jia, Yanshun;Liu, Guoqiang;Yang, Yunmeng;Gao, Ying;Yang, Tao;Tang, Fanlong
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.469-478
    • /
    • 2020
  • This study aims to establish a new methodological framework for the evaluation of the evolution of the reliability of plain concrete for pavement vs number of cycles under flexural fatigue loading. According to the framework, a new method calculating the reliability was proposed through probability simulation in order to describe a random accumulation of fatigue damage, which combines reliability theory, one-to-one probability density functions transformation technique, cumulative fatigue damage theory and Weibull distribution theory. Then the statistical analysis of flexural fatigue performance of cement concrete tested was carried out utilizing Weibull distribution. Ultimately, the reliability for the tested cement concrete was obtained by the proposed method. Results indicate that the stochastic evolution behavior of concrete materials under fatigue loading can be captured by the established framework. The flexural fatigue life data of concrete at different stress levels is well described utilizing the two-parameter Weibull distribution. The evolution of reliability for concrete materials tested in this study develops by three stages and may corresponds to develop stages of cracking. The proposed method may also be available for the analysis of degradation behaviors under non-fatigue conditions.

Damage detection of plate-like structures using intelligent surrogate model

  • Torkzadeh, Peyman;Fathnejat, Hamed;Ghiasi, Ramin
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1233-1250
    • /
    • 2016
  • Cracks in plate-like structures are some of the main reasons for destruction of the entire structure. In this study, a novel two-stage methodology is proposed for damage detection of flexural plates using an optimized artificial neural network. In the first stage, location of damages in plates is investigated using curvature-moment and curvature-moment derivative concepts. After detecting the damaged areas, the equations for damage severity detection are solved via Bat Algorithm (BA). In the second stage, in order to efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, multiple damage location assurance criterion index based on the frequency change vector of structures are evaluated using properly trained cascade feed-forward neural network (CFNN) as a surrogate model. In order to achieve the most generalized neural network as a surrogate model, its structure is optimized using binary version of BA. To validate this proposed solution method, two examples are presented. The results indicate that after determining the damage location based on curvature-moment derivative concept, the proposed solution method for damage severity detection leads to significant reduction of computational time compared with direct finite element method. Furthermore, integrating BA with the efficient approximation mechanism of finite element model, maintains the acceptable accuracy of damage severity detection.

Nondestructive damage evaluation of a curved thin beam

  • Kim, Byeong Hwa;Joo, Hwan Joong;Park, Tae Hyo
    • Structural Engineering and Mechanics
    • /
    • 제24권6호
    • /
    • pp.665-682
    • /
    • 2006
  • A vibration-based nondestructive damage evaluation technique for a curved thin beam is introduced. The proposed method is capable of detecting, locating, and sizing structural damage simultaneously by using a few of the lower natural frequencies and their corresponding mode shapes before and after a small damage event. The proposed approach utilizes modal flexibilities reconstructed from measured modal parameters. A rigorous system of equations governing damage and curvature of modal flexibility is derived in the context of elasticity. To solve the resulting system of governing equations, an efficient pseudo-inverse technique is introduced. The direct inspection of the resulting solutions provides the location and severity of damage in a curved thin beam. This study confirms that there is a strong linear relationship between the curvature of modal flexibility and flexural damage in the selected class of structures. Several numerical case studies are provided to justify the performance of the proposed approach. The proposed method introduces a way to avoid the singularity and mode selection problems from earlier attempts.

음향방출 특성을 이용한 콘크리트 부재종류 및 하중상태에 따른 균열손상 연구 (Identification of Damage Characteristics Due to Cracking of Concrete Structures Using Acoustic Emission)

  • 오병환;김응재;김광수;유성원
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.107-116
    • /
    • 1999
  • The damage in concrete structures generally starts with microcracking and thus it is important to find and explore these microcracks in concrete in order to ensure appropriate safety and serviceability. The purpose of the present study is to identify the damage characteristics of concrete structures due to cracking by employing the acoustic emission techniques. A comprehensive experimental study has been done. The cracking damage under tensile and flexural loadings have been identified and the bond damage between steel and concrete have been also characterized. It is seen that the amplitudes and energy level of Acoustic Emission(AE) events are found to be relatively small for bond cracking damages and large for tensile cracking damages. The characteristic equations of the AE events for various cracking damages have been proposed based on the present test data. The internal microcracks are progressively developed ahead of a visible actual crack and the present study clearly exhibits these damage mechanism for various types of cracking in concrete. The present study provides useful data which can be used to identify the various types of cracking damages in concrete structures. This will allow efficient maintenance of concrete structures through monitoring of internal cracking based on acoustic emission.

굽힘파 전파 특성을 이용한 레일체결장치의 구조 결함 진단 (Identification of Structural Defects in Rail Fastening Systems Using Flexural Wave Propagation)

  • 박정원;박준홍
    • 비파괴검사학회지
    • /
    • 제34권1호
    • /
    • pp.38-43
    • /
    • 2014
  • 굽힘파 전파 특성을 이용하여 지지강성을 도출하고 이를 이용한 레일체결장치의 결함 검출 시험법을 제안하였다. 점탄성 패드로 지지되고 체결장치로 고정된 레일의 진동 응답은 주파수에 따라 지지단 동특성에 크게 영향을 받는다. 체결장치에 결함이 발생할 경우에는 구조적인 불연속성으로 인해 굽힘 파동의 전파 특성이 변화하게 된다. 이러한 변화를 감지하기 위해서 전달함수법을 이용해 주파수에 따라 변화하는 레일 지지단 동특성을 측정하였다. 연속 스프링으로 지지된 레일 응답으로부터 예측한 레일의 보존에너지를 이용해 결함에 대한 파동 전파의 민감도를 해석하였다. 민감도 해석 결과와 동적지지강성 변화를 측정하여 손상지수를 계산하고 결함 위치를 추정하였다.

Effect of fiber content on flexural properties of fishnet/GFRP hybrid composites

  • Raj, F. Michael;Nagarajan, V.A.;Elsi, S. Sahaya;Jayaram, R.S.
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.13-24
    • /
    • 2016
  • In the present paper, glass fibers are substituted partially with monofilament fishnet and polyester matrix for making the composites. The composite specimens were prepared in accordance with ASTM for analyzing the flexural strength and dynamic mechanical properties. Furthermore, machinability revealed the interaction of glass fiber and partial substituted monofilament fishnet fiber with the matrix. Fiber pullouts on the fractured specimen during the physical testing of the composites are also investigated by COSLAB microscope. The results reveal that the fishnet based composites have appreciably higher flexural properties. Furthermore, the glass fiber, woven roving and fishnet composite has more storage modulus and significant mechanical damping. The composite specimens were fabricated by hand lay-up method. Hence, these composites are the possible applications to develop the value added products. The results of this study are presented.

잠수함용 GFRP 표면결함 수리에 따른 기계적 특성변화 연구 (A Study on the Mechanical Characteristic Change Accordance with Surface Damaged Submarine GFRP Repairing)

  • 정영인;구자길;이윤석
    • 품질경영학회지
    • /
    • 제48권2호
    • /
    • pp.257-267
    • /
    • 2020
  • Purpose: The purpose of this study is to define guideline for fiber-glass-resin-putty repairing method for submarine GFRP by comparing structural strength between normal GFRP and putty repaired GFRP. Methods: GFRP specimen tensile and flexural tests are conducted in accordance with ASTM D3039/3039M-17 and ASTM D790 Procedure A. The collected data was analysed whether satisfies its structural strength criteria. Furthermore, It is analysed to find dominant reason of structural strength changes. Results: The result of the study is as follows; flexural strength of GFRP is satisfied strength criteria for all test cases, but tensile strength is not satisfied its criteria for some cases which over 2 mm depth of surface damage. Conclusion: The fiberglass-resin-putty repairing method should be applied to under 2 mm depth of damage which is not affecting to roving fiber layer destruction in GREP laminate.

진동 인텐시티 계측 방법을 이용한 무한보의 손상감지에 관한 기초 연구 (A Feasibility Study on the Damage Detection of Infinite Beams Using the Structural Intensity Measurement Technique)

  • 허영철;이종원;김재관;길현권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.54-58
    • /
    • 2008
  • The structural intensities have been applied to understand a source point and the path of vibrational energy flows in interested structures by many researchers. In this paper, a feasibility study was carried out to investigate the characteristics of a damaged beam with a inflicted open crack using the structural intensities. The damaged beam was taken as a continuous system with equivalent bending stiffness and the flexural vibrations were only considered in numerical simulation and experiments. A four(4)-transducer array was used to measure the flexural vibrations of the beam and the structural intensities were estimated by means of cross spectral density method. As a result, the magnitude changes of the structural intensities could be observed in the vicinity of the damage location and a damage index was newly proposed to identify the damage zone. It has been confirmed that the measurement of the structural intensities was simple and effective method to find out the damage zone.

  • PDF

Effect of position of hexagonal opening in concrete encased steel castellated beams under flexural loading

  • Velrajkumar, G.;Muthuraj, M.P.
    • Computers and Concrete
    • /
    • 제26권1호
    • /
    • pp.95-106
    • /
    • 2020
  • Castellated beams fabricated from standard I-sections are being used for several structural applications such as commercial and industrial buildings, multistory buildings, warehouses and portal frames in view of numerous advantages. The advantages include enhanced moment of inertia, stiffness, flexural resistance, reduction in weight of structure, by passing the used plate girders, the passage of service through the web openings etc. In the present study, experimental and numerical investigations were carried out on concrete encased steel castellated beams with hexagonal openings under flexural loading. Various positions of openings such as along the neutral axis, above the neutral axis and below the neutral axis were considered for the study. From the experimental findings, it has been observed that the load-carrying capacity of the castellated beam with web opening above neutral axis is found to be higher compared to other configurations. Nonlinear finite element analysis was performed by using general purpose finite element software ABAQUS considering the material nonlinearities. Concrete damage plasticity model was employed to model the nonlinearity of concrete and elasto-plastic model for steel. It has been observed that FE model could able to capture the behaviour of concrete encased steel castellated beams and the predicted values are in good agreement with the corresponding experimental values.

Flexural and tensile properties of a glass fiber-reinforced ultra-high-strength concrete: an experimental, micromechanical and numerical study

  • Roth, M. Jason;Slawson, Thomas R.;Flores, Omar G.
    • Computers and Concrete
    • /
    • 제7권2호
    • /
    • pp.169-190
    • /
    • 2010
  • The focus of this research effort was characterization of the flexural and tensile properties of a specific ultra-high-strength, fiber-reinforced concrete material. The material exhibited a mean unconfined compressive strength of approximately 140 MPa and was reinforced with short, randomly distributed alkali resistant glass fibers. As a part of the study, coupled experimental, analytical and numerical investigations were performed. Flexural and direct tension tests were first conducted to experimentally characterize material behavior. Following experimentation, a micromechanically-based analytical model was utilized to calculate the material's tensile failure response, which was compared to the experimental results. Lastly, to investigate the relationship between the tensile failure and flexural response, a numerical analysis of the flexural experiments was performed utilizing the experimentally developed tensile failure function. Results of the experimental, analytical and numerical investigations are presented herein.