• Title/Summary/Keyword: flexural compressive strength

Search Result 1,124, Processing Time 0.024 seconds

Properties of Polymer Permeability Concrete Using Recycled Aggregate (재생골재를 활용한 폴리머 투수콘크리트의 특성)

  • Kim, Young-Ik;Sung, Chan-Yong;Choi, Sang-Leung;Joung, Duck-Hyun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.415-418
    • /
    • 2003
  • This study is performed to examine properties of polymer permeability concrete using recycled coarse aggregate and blast furnace slag for application of structures needed permeability. Tests for compressive strength, flexural strength and pulse velocity with replacement ratio of recycled coarse aggregate are performed. As a result, compressive strength, flexural strength and coefficient of permeability of polymer permeability concrete containing recycled coarse aggregate are in the range of $180{\sim}200kgf/cm^2,\;58{\sim}64kgf/cm^2\;and\;4.6{\times}10^{-2}{\sim}6.9{\times}10^{-2}cm/s$, respectively. Compressive strength, flexural strength and pulse velocity of polymer concrete containing crushed stone only are $192kgf/cm^2,\;65kgf/cm^2\;and\;6.1{\times}10^{-2}cm/s$, respectively. Accordingly, recycled coarse aggregate is expected that can be utilizing as an aggregate of polymer permeability concrete.

  • PDF

Physical and Mechanical Properties of Recycled Polymer Concrete (재생 폴리머 콘크리트의 물리.역학적 특성)

  • Baek, Seung-Chul;Kim, Young-Ik;Sung, Chan-Yong;Choi, Sang-Leung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.411-414
    • /
    • 2003
  • This study is performed to examine the physical and mechanical properties of recycled polymer concrete using recycled coarse aggregate and recycled fine aggregate. Tests for compressive strength, flexural strength and pulse velocity with replacement ratio of recycled coarse aggregate and recycled fine aggregate are performed. As a result, compressive strength, flexural strength and pulse velocity of polymer concrete containing recycled coarse aggregate are in the range of $826{\sim}849kgf/cm^2,\;192{\sim}200kgf/cm^2\;and\;3,932{\sim}4,000m/s$, respectively. Compressive strength, flexural strength and pulse velocity of polymer concrete containing crushed stone only are $805kgf/cm^2,\;197kgf/cm^2$ and 3,931 m/s, respectively. Accordingly, recycled aggregates is expected that can be utilizing as an aggregate of polymer concrete.

  • PDF

A Study of Strength and Drying Shrinkages on Recycled Concrete (재생콘크리트 강도 및 건축수축 특성)

  • 이진용;배성용;박태욱;최환세
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.27-32
    • /
    • 1997
  • It was fond that the compressive and flexural strength of recycled concrete was decreased with increasing the content of recycled aggregate and the early compressive strength was also decreased with increasing Fly Ash level. In comparison with recycled concretes producing various sources, the trend were similar to those shown above, but the differences were minor. the development of Flexural strength in both concretes was similar, but the recycled concrete is lower in the ratio of flexural strength and compressive strength. The drying shrinkage of recycled concrete is increased with increasing the amount of recycled aggregate, particularly the maximum differences were reached between at 2 and 3 weeks.

  • PDF

Effect of Mixing Method on Mechanical Properties of Fiber Reinforced Concrete

  • Kim, Hyun Wook;Lee, Chang Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.351-357
    • /
    • 2015
  • Fiber reinforced concrete (FRC) has been successfully used to enhance the flexural toughness of concrete. As fibers are randomly oriented in FRC, they sometimes produce clumps that reduce the mechanical performance, and a properly chosen mixing protocol can be a way to minimize this problem. In this research, the effects of mixing method on the mechanical properties of FRC were investigated. The compressive strength, flexural strength, and flexural toughness were measured using three different mixing methods. It was shown from the results that the compressive strength and peak flexural load were not affected by changes in mixing method. However, in terms of flexural toughness, the changes in mixing method clearly affected the flexural toughness of FRC. The truck-mixed FRC outperformed two pan-mixed FRCs.

Study on properties of geopolymer-polyurethane sponge composite

  • Chen, Zhilei;Lee, Sang-Jin
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.419-423
    • /
    • 2018
  • A newly conceived geopolymer composite was fabricated by a combination of the geopolymer and polyurethane sponge. The density and porosity of hardened geopolymer composite, corresponded to different pore sizes of polyurethane sponge, exhibited no significant differences from each other. However, the mechanical behavior, the compressive strength and flexural strength, showed slight differences accordingly. Fracture of the geopolymer composite exposed to high compressive load was not observed from all specimens containing polyurethane sponge. The toughness enhancement of the geopolymer composite, due to spontaneous elasticity of polyurethane sponge, crack spread, and crack diffraction, was identified through the stress-strain curve and microstructure of fracture surface. The newly designed geopolymer composite having a 3-dimensional sponge skeleton showed relatively higher flexural strength of 8.0 MPa than other conventional geopolymer composites.

Strength and toughness prediction of slurry infiltrated fibrous concrete using multilinear regression

  • Shelorkar, Ajay P.;Jadhao, Pradip D.
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.123-132
    • /
    • 2022
  • This paper aims to adapt Multilinear regression (MLR) to predict the strength and toughness of SIFCON containing various pozzolanic materials. Slurry Infiltrated Fibrous Concrete (SIFCON) is one of the most common terms used in concrete manufacturing, known for its benefits such as high ductility, toughness and high ultimate strength. Assessment of compressive strength (CS.), flexural strength (F.S.), splitting tensile strength (STS), dynamic elasticity modulus (DME) and impact energy (I.E.) using the experimental approach is too costly. It is time-consuming, and a slight error can lead to a repeat of the test and, to solve this, alternative methods are used to predict the strength and toughness properties of SIFCON. In the present study, the experimentally investigated SIFCON data about various mix proportions are used to predict the strength and toughness properties using regression analysis-multilinear regression (MLR) models. The input parameters used in regression models are cement, fibre, fly ash, Metakaolin, fine aggregate, blast furnace slag, bottom ash, water-cement ratio, and the strength and toughness properties of SIFCON at 28 days is the output parameter. The models are developed and validated using data obtained from the experimental investigation. The investigations were done on 36 SIFCON mixes, and specimens were cast and tested after 28 days of curing. The MLR model yields correlation between predicted and actual values of the compressive strength (C.S.), flexural strength, splitting tensile strength, dynamic modulus of elasticity and impact energy. R-squared values for the relationship between observed and predicted compressive strength are 0.9548, flexural strength 0.9058, split tensile strength 0.9047, dynamic modulus of elasticity 0.8611 for impact energy 0.8366. This examination shows that the MLR model can predict the strength and toughness properties of SIFCON.

Effects of Steel Fiber Properties on Compressive and Flexural Toughness of Steel Fiber-Reinforced Concrete (강섬유의 특성이 강섬유보강 콘크리트의 압축 및 휨 인성에 미치는 영향)

  • Lim, Dong-Gyun;Jang, Seok-Joon;Jeong, Gwon-Young;Youn, Da-Ae;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.43-50
    • /
    • 2019
  • Effects of tensile strength and aspect ratio of steel fiber on compressive and flexural behavior of steel fiber-reinforced concrete (SFRC) with high- and normal-strength were investigated. Also, this study explores compressive behavior of SFRC with different loading rate. For this purpose, four types of steel fiber were used for SFRC with specified compressive strength of 35 and 60 MPa, respectively. Cylindrical specimens with a diameter of 150 mm and height of 300 mm were made for compression test, and prismatic specimens with a $150{\times}150mm$ cross-section and 450 mm span length were made for flexural test. Test results from compression and flexural tests indicated that the toughness of concrete significant increased with steel fibers. Especially, using steel fiber with high tensile strength and aspect ratio can be lead to performance improvement of high-strength SFRC. In this study, equations are suggested to predict compressive toughness ratio of SFRC from flexural toughness ratio.

Geopolymer concrete with high strength, workability and setting time using recycled steel wires and basalt powder

  • Ali Ihsan Celik;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.689-707
    • /
    • 2023
  • Geopolymer concrete production is interesting as it is an alternative to portland cement concrete. However, workability, setting time and strength expectations limit the sustainable application of geopolymer concrete in practice. This study aims to improve the production of geopolymer concrete to mitigate these drawbacks. The improvement in the workability and setting time were achieved with the additional use of NaOH solution whereas an increase in the strength was gained with the addition of recycled steel fibers from waste tires. In addition, the use of 25% basalt powder instead of fly ash and the addition of recycled steel fibers from waste tires improved its environmental feature. The samples with steel fiber ratios ranging between 0.5% and 5% and basalt powder of 25%, 50% and 75% were tested under both compressive and flexure forces. The compressive and flexural capacities were significantly enhanced by utilizing recycled steel fibers from waste tires. However, decreases in these capacities were detected as the basalt powder ratio increased. In general, as the waste wire ratio increased, the compressive strength gradually increased. While the compressive strength of the reference sample was 26 MPa, when the wire ratio was 5%, the compressive strength increased up to 53 MPa. With the addition of 75% basalt powder, the compressive strength decreases by 60%, but when the 3% wire ratio is reached, the compressive strength is obtained as in the reference sample. In the sample group to which 25% basalt powder was added, the flexural strength increased by 97% when the waste wire addition rate was 5%. In addition, while the energy absorption capacity was 0.66 kN in the reference sample, it increased to 12.33 kN with the addition of 5% wire. The production phase revealed that basalt powder and waste steel wire had a significant impact on the workability and setting time. Furthermore, SEM analyses were performed.

A Study on the Mechanical Properties of Floor Slab structures Using Fiber Reinforced Cement Composites (섬유보강 시멘트 복합체를 이용한 상판구조의 역학적 특성에 관한 연구)

  • 박승범;윤의식;차종훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.343-349
    • /
    • 1994
  • The purpose of this study is to investigate the mechanical properties of floor slab structures with high-strength and lightweight CFRC panel using fly ash, PAN-derived and Pitch-derived carbon fiber. As a result, the flexural strength of CFRC is remarkably increased by CF contents, but compressive strength of the CFRC is not so increased as flexural strength. The bulk specific gravity is influenced by FA contents more than by CF contents, The compressive strength and the flexural strength are increased by FA contests, but decreased the case of 30% of contents. In order to increasing the flexural-carrying capacity of floor slab structures, it is recommended that the shape of anchor for reinforcement is required type-C and the spacing of anchor is required below 60mm.

  • PDF

Analysis and Design Programming of RC Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 RC보의 해석 및 설계 프로그램 개발)

  • 김성도;김성수
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.319-325
    • /
    • 2004
  • In this study, analysis and design programs of bending of RC beams strengthened with fiber sheets are developed by using Visual Basic Language. The program consists two groups, ultimate strength method and nonlinear flexural analysis method. Ultimate strength method regards concrete compressive stress as a rectangular stress block and do not consider tensile stress of concrete and load-deflection curves. On the other hand, nonlinear flexural analysis considers tensile stress of concrete, load-deflection curves, state of stress distribution and failure strain of strengthening material. Also, the analysis method used in this study regards nonlinear flexural stress as compressive stress of concrete. This program can be a good tool for determining the bending strength of strengthened RC beams and estimating the amount of fiber sheets for practical use.