• Title/Summary/Keyword: flexural compression

Search Result 338, Processing Time 0.027 seconds

Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression (대구경 콘크리트 충전 복합소재 파일의 휨-압축 거동에 대한 실험적 분석)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.519-529
    • /
    • 2009
  • Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165 mm to 600 mm, and the lengths of test specimens ranged from 1,350 mm to 8,000 mm. The strengths of the fill-in concrete were 27 and 40 MPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed.

Buckling Analysis of Corrugated Board using Finite Element Method (유한요소법에 의한 Corrugated Board의 휨 발란스 해석)

  • 박종민
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.127-136
    • /
    • 2003
  • The top-to-bottom compression strength of corrugated board box is the most important mode of loading during it's no, and it depends largely on the edgewise compression strength of the corrugated board in the cross-machine direction and to a considerable extent on the flexural stiffness in both principal directions (CD; cross-machine direction, MD; machine direction) of the corrugated board. Corrugated board is a sandwich structure with an orthotropic property. The purpose of this study was to elucidate the principal design parameters for board combination of corrugated board from the viewpoint of bending strength through the finite element analysis [FEA] fur the various corrugated board. In general, the flexural stiffness [FS] in the MD was 2-3 times larger than that in the CD, and the effect of liner for the FS of corrugated board was much bigger than that of corrugating medium. The flexural stiffness index [FSI] was high when the stiffness of liner was in the order of inner, outer, and middle liner in double-wall corrugated board [DW], and the effect of the stiffness arrangement or itself reinforcement of corrugating medium on the FSI was not high. In single-wall corrugated board [SW] with DW. the variation of FSI with itself stiffness reinforcement of liner was much bigger than that with stiffness arrangement of liner. The highest FSI was at the ratio of about 2:1:2 for basis weight distribution of outer, middle, and inner liner if the stiffness of liner and total basis weight of corrugated board were equal in DW Secondarily. basis weight was in the order of inner, outer, and middle liner. However, the variation of FSI with basis weight distribution between liner and corrugating medium was much bigger than that with itself basis weight distribution ratio of liner and corrugating medium respectively in both DW and SW. md the FSI was high as more total basis weight was divided into liner. These phenomena fur board combination of corrugated board based on the FEA were well verified by experimental investigation.

Size Effect for Flexural Compressive Strength of Concrete (콘크리트의 휨 압축강도의 크기효과)

  • Kim, Jin-Keun;Yi, Seong-Tae;Yang, Eun-Ik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 1999
  • When the ultimate strength of a concrete flexural member is evaluated, the effect of member size is usually not considered. For various types of loading, however, the strength always decreases with the increment of member size. In this paper the size effect of a flexural compression member is investigated by experiments. For this purpose, a series of C-shaped specimens subjected to axial compressive load and bending moment was tested using three different sizes of specimens with a compressive strength of 528 kg/$cm^2$. According to test results the size effect on flexural compressive strength was apparent, and more distinct than that for uniaxial compressive strength of cylinders. Finally a model equation was derived using regression analyses with experimental data.

Effects of cement dosage and steel fiber ratio on the mechanical properties of reactive powder concrete

  • Erdogdu, Sakir;Kandil, Ufuk;Nayir, Safa
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.139-144
    • /
    • 2019
  • In this study, the mechanical properties of reactive powder concrete (RPC) with a constant cement to silica fume ratio of 4 were investigated. In the experimental program, reactive powder concretes with steel fiber at different ratios were produced. Five productions using quartz sand with a maximum grain size of 0.6 mm were performed. A superplasticizer with a ratio of 3% of the cement was used for all productions. $40{\times}40{\times}160mm$ prismatic specimens were prepared and tested for flexural and compression. The specimens were exposed to two different curing conditions as autoclave and standard curing condition. Autoclave exposure was performed for 3 hours under a pressure of 2 MPa. It was observed that the compressive strength of concrete, along with the flexural strength exposed to autoclave was quite high compared to the strength of concretes subjected to standard curing. The results obtained indicated that the compressive strength, along with the flexural strength of autoclaved concrete increased as the amount of cement used increases. Approximately 15% increase in flexural strength was achieved with a 4% steel fiber addition. The maximum compressive strength that has been reached is over 210 MPa for reactive powder concrete for the same steel fiber ratio and with a cement content of $960kg/m^3$. The relationship between compressive strength and flexural strength of reactive powder concrete exposed to both curing conditions was also identified.

Flexural behavior of retrofitted RC columns by FRP-MF, Experimental approach

  • Mahdavi, Navideh;Tasnimi, Abbas Ali
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.347-356
    • /
    • 2019
  • Most of the recent studies have improved the efficiency of FRP jackets for increasing the compressive strength, shear strength, and ductility of reinforced concrete columns; however, the influence of FRP jackets on the flexural capacity is slight. Although new methods such as NSM (near surface mounted) are utilized to solve this problem, yet practical difficulties, behavior dependency on adhesives, and brittle failure necessitate finding better methods. This paper presents the results of an experimental study on the application of fiber-reinforced polymer fastened mechanically to the concrete columns to improve the flexural capacity of RC columns. For this purpose, mechanical fasteners were used to achieve the composite behavior of FRP and concrete columns. The experimental program included five reinforced concrete columns retrofitted by different methods using FRP subjected to constant axial compression and lateral cyclic loading. The experimental results showed that the use of the new method proposed in this paper increased the flexural strength and lateral load capacity of the columns significantly, and good composite action of FRP and RC column was achieved. Moreover, the experimental results were compared with the results obtained from the analytical study based on strain compatibility, and good proximity was reached.

Ductility enhancement of reinforced concrete thin walls

  • Kim, Jang Hoon
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.111-123
    • /
    • 2005
  • The ductility of reinforced concrete bearing walls subjected to high axial loading and moment can be enhanced by improving the deformability of the compression zone or by reducing the neutral axis depth. The current state-of-the-art procedure evaluating the confinement effect prompts a consideration of the spaces between the transverse and longitudinal reinforcing bars, and a provision of tie bars. At the same time, consideration must also be given to the thickness of the walls. However, such considerations indicate that the confinement effect cannot be expected with the current practice of detailing wall ends in Korea. As an alternative, a comprehensive method for dimensioning boundary elements is proposed so that the entire section of a boundary element can stay within the compression zone when the full flexural strength of the wall is developed. In this comprehensive method, the once predominant code approach for determining the compression zone has been advanced by considering the rectangular stress block parameters varying with the extreme compression fiber strain. Moreover, the size of boundary elements can also be determined in relation to the architectural requirement.

IMPROVEMENT OF FLEXURAL STRENGTH OF BIODEGRADABLE POLYMERIC INTERNAL FIXATION DEVICE BY SOLID STATE EXTRUSION

  • Lim, Soo-Ho;Lim, Jung-Yul;Kim, Soo-Hyun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.23-26
    • /
    • 2003
  • Solid-state extrusion technique was employed for the improvement of mechanical properties of polylactic acid (PLLA) widely used as biodegradable internal fixation devices currently. Cylindrical billets were machined out from the vacuum compression-molded PLLA to have various diameters, and solid-state extrusion of the billets was performed at various drawing rates and at the extrusion temperature of $130^{\circ}C$. Throughout the whole processes the decrease in molecular weight was significantly suppressed to be about $10\%$. Flexural modulus and strength of PLLA increased up to 8.3 GPa and 221 MPa, respectively. Studies on the orientation and crystallinity of extruded PLLA could reveal the effects of billet morphology, draw ratio, and drawing rate on the flexural strengths of PLLA.

  • PDF

Flexural Behavior of Strengthened RC Beams Using FRP Sheets (FRP시트를 이용한 보강 철근콘크리트보의 휨 거동)

  • 박대효;부준성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.75-80
    • /
    • 2001
  • This paper investigates the flexural behavior of reinforced concrete beams strengthened with externally bonded fiber reinforced plastic (FRP) sheets is investigated in this work. FRP is attractive for strengthening the RC beams due to its good tensile strength, low weight, resistance to corrosion, and easy applicability. A simple and direct analytical procedure for evaluating the ultimate flexural capacity of FRP strengthened reinforced concrete (SRC) beams is presented using the equilibrium equations and compatibility of strains. Upper and lower limits of FRP sheet area to ensure the ductile behavior are established. A parametric study is conducted to investigate the effects of design variables such as sheet area, sheet stiffness and strength, concrete compression strength, and steel reinforcement ratio. The analytical procedure is compared with results of experimental data available in the literature.

  • PDF

Effect of particle size on graphite reinforced conductive polymer composites (입자의 크기에 따른 흑연 보강 전도성 고분자 복합재료의 특성 연구)

  • Heo, S.I.;Yun, J.C.;Oh, K.S.;Han, K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.257-260
    • /
    • 2005
  • Graphite reinforced conductive polymer composites were fabricated by the compression molding technique. Graphite powder was mixed with an phenol resin to impart electrical property in composites. The ratio and particle size of graphite powder were varied to investigate electrical conductivity of cured composites. In this study, graphite reinforced conductive polymer composites with high filler loadings(>66wt.%) were manufactured to accomplish high electrical conductivity. With increasing the loading ratio of graphite powder, the electrical conductivity and flexural strength increased. However. above 80wt.% filler loadings, flexural strength decreased due to lack of resin. Regardless of graphite particle size, electrical conductivity wasn’t varied. On the other hand, with decreasing particle size, flexural strength increased due to high specific surface area.

  • PDF

Size Effect on Flexural Stress-Strain Relationship of Reinforced-Concrete Beams (철근콘크리트 보의 휨압축강도 및 변형률에 대한 크기효과)

  • 김민수;김진근;김장호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.911-916
    • /
    • 2002
  • It is important to consider the effect of depth when estimating the ultimate strength of a concrete flexural member because the strength always decreases with an increase of member size. In this study, the size effect of reinforced concrete beam was experimentally investigated. For this purpose, a series of beam specimens subjected to 2-point bending load were tested. More specifically, three different depth (d=15, 30, and 60 cm) of reinforced concrete beams were tested to investigate the size effect. The shear-span to depth ratio (a/d=3) and thickness (20 cm) of the specimens were kept constant where the size effect in out-of-plan direction is not considered. The test results are fitted using least square method (LSM) to obtain parameters for modified size effect law (MSEL). The analysis results indicate that the flexural compression strength and ultimate strain decreases as the specimen size increases. Finally, more general parameters for MSEL are suggested.

  • PDF