• 제목/요약/키워드: flexural compression

검색결과 338건 처리시간 0.026초

Study on the flexural behavior of corroded built-up cold-formed thin-walled steel beams

  • Zhang, Zongxing;Xu, Shanhua;Li, Han;Li, Rou;Nie, Biao
    • Steel and Composite Structures
    • /
    • 제37권3호
    • /
    • pp.353-369
    • /
    • 2020
  • Eight cold-formed thin-walled steel beams were performed to investigate the effect of corrosion damage on the flexural behavior of steel beams. The relationships between failure modes or load-displacement curves and corrosion degree of steel beams were investigated. A series of parametric analysis with more than forty finite element models were also performed with different corrosion degrees, types and locations. The results showed that the reduction of cross-section thickness as well as corrosion pits on the surface would lead to a decline in the stiffness and flexural capacity of steel beams, and gradually intensified with the corrosion degree. The yield load, ultimate load and critical buckling load of the corroded specimen IV-B46-4 decreased by 22.2%, 26% and 45%, respectively. The failure modes of steel beams changed from strength failure to stability failure or brittle fracture with the corrosion degree increasing. In addition, thickness damage and corrosion pits at different locations caused the degradation of flexural capacity, the worst of which was the thickness damage of compression zone. Finally, the method for calculating flexural capacity of corroded cold-formed thin-walled steel beams was also proposed based on experimental investigation and numerical analysis results.

프리스트레스트 콘크리트 보를 위한 변형률 기반 전단강도 모델 (Strain-Based Shear Strength Model for Prestressed Beams)

  • 강순필;최경규;박홍근
    • 콘크리트학회논문집
    • /
    • 제21권1호
    • /
    • pp.75-84
    • /
    • 2009
  • 이전 연구에서 제안된 변형률 기반 전단강도모델에 근거하여, 프리스트레스트 콘크리트 보의 전단강도를 예측하기 위한 해석모델을 제안하였다. 전단보강 되지 않은 콘크리트 보에서는 일반적으로 인장대보다 콘크리트 압축대가 주로 전단력에 저항한다. 콘크리트의 전단성능은 콘크리트의 재료 파괴기준을 통해 정의된다. 압축대의 전단성능은 단면에 작용하는 수직응력과의 상관관계를 고려하여, 경사 파괴면을 따라서 산정된다. 압축대의 수직응력 분포는 부재의 휨변형에 따라 변화하므로, 압축대 단면의 전단성능은 휨변형에 대한 함수이다. 보의 전단강도는 전단성능 곡선과 전단수요 곡선의 교점에서 결정된다. 제안된 해석모델을 기존 연구자들의 실험 연구 결과와 비교한 결과, 실험체의 전단강도를 정확하게 예측하였다.

하이브리드 슈퍼코팅(HSC)과 유리섬유를 통한 조적조 내진보강 연구 (Experimental Study of Hybrid Super Coating (HSC) and Cast Reinforcement for Masonry Wall)

  • 이가윤;문아해;이승준;김재현;이기학
    • 한국지진공학회논문집
    • /
    • 제25권5호
    • /
    • pp.213-221
    • /
    • 2021
  • Many Korean domestic masonry structures constructed since 1970 have been found to be vulnerable to earthquakes because they lack efficient lateral force resistance. Many studies have shown that the brick and mortar suddenly experience brittle fracture and out-of-plane collapse when they reach the inelastic range. This study evaluated the seismic retrofitting of non-reinforced masonry with Hybrid Super Coating (HSC) and Cast, manufactured using glass fiber. Four types of specimen original specimen (BR-OR), one layered HSC (BR-HS-O), two-layered HSC (BR-HS-B), one layered HSC, and Cast (BR-CT-HS-O) were constructed and analyzed using compression, flexural tensile, diagonal compression, and triplet tests. The specimen responses were presented and discussed in load-displacement curves, maximum strength, and crack propagation. The compressive strength of the retrofit specimens slightly increased, while the flexural tensile strength of the retrofit specimens increased significantly. In addition, the HSC and Cast also produced a considerable increase in the ductile response of specimens before failure. Diagonal compression test results showed that HSC delayed brittle cracks between the mortar and bricks and resulted in larger displacement before failure than the original brick. The triplet test results confirmed that the bonding strength of the retrofit specimens also increased. The application of HSC and Cast was found to restrain the occurrence of brittle failure effectively and delayed the collapse of masonry wall structures.

휨 철근이 배근된 HPFRCC 보 부재의 휨 거동 (Flexural Behavior of High Performance Fiber Reinforced Cementitious Composites (HPFRCC) Beam with a Reinforcing Bar)

  • 신경준;김재화;조재열;이성철
    • 콘크리트학회논문집
    • /
    • 제23권2호
    • /
    • pp.169-176
    • /
    • 2011
  • 이 논문에서는 철근의 효과를 고려한 고인성 섬유 보강 콘크리트의 휨 거동을 분석하기 위해 이에 대한 휨 실험을 수행하였다. 실험 결과, 부재의 파괴 시 까지 안정적인 인장 응력을 보여주는 HPFRCC로 인해 휨 강도가 증가하는 것으로 나타났으며, 특히 인장 철근이 항복할 때까지 균열이 국부화되지 않고 고르게 분산되는 것으로 나타났다. 단면 해석을 통해, 직접 인장 실험으로부터 측정된 인장강도를 이용하여 해석할 경우 R/HPFRCC의 휨 강도를 과대평가하는 것으로 나타난 반면, 인장 강성 실험으로부터 도출된 인장강도를 이용하여 해석할 경우 실험 결과와 비교적 잘 일치하는 것으로 나타났다. 실험 및 이론적 연구를 바탕으로 이 논문에서는 휨 파괴 기준을 단면 상단에서의 콘크리트 압축파괴에 의한 것과 단면 하단부의 인장 파괴에 의한 것으로 구분하였다. 정의된 두 가지 휨 파괴 기준에 근거하여 이 논문에서는 극한 휨 강도를 산정할 수 있는 식을 제안하였으며, 제안된 식은 R/HPFRCC 부재의 설계 및 해석에 유용할 것으로 사료된다.

콘크리트피복 원형충전강관 기둥의 압축성능 (Axial Load Performance of Circular CFT Columns with Concrete Encasement)

  • 이호준;박홍근;최인락
    • 한국강구조학회 논문집
    • /
    • 제27권6호
    • /
    • pp.525-536
    • /
    • 2015
  • 콘크리트피복 충전강관의 휨-압축 성능을 평가하기 위한 편심압축실험을 수행하였다. 기둥 주철근의 국부좌굴을 구속하고 콘크리트피복의 조기파괴를 방지하기 위하여 U형 띠철근 상세를 제안하였다. 주요 실험변수는 축하중 편심거리, 띠철근 간격, 그리고 콘크리트피복 여부이다. 실험결과 얇은 콘크리트피복에 수직균열이 조기에 발생하였지만 실험체의 최대강도는 콘크리트 피복의 기여도를 고려한 예측강도를 만족하였다. 또한, 내부 원형강관으로 인하여 제안된 콘크리트피복 충전강관은 우수한 변형능력을 나타냈다. 실험체의 휨-압축 강도 및 휨강성을 현행 설계기준과 비교하여 분석하였다.

Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners

  • Zand, Ahmed W. Al;Badaruzzaman, W.H. Wan;Ali, Mustafa M.;Hasan, Qahtan A.;Al-Shaikhli, Marwan S.
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.123-139
    • /
    • 2020
  • The tube outward local buckling of Concrete-Filled Steel Tube (CFST) beam under high compression stress is still considered a critical problem, especially for steel tubes with a slender section compared to semi-compact and compact sections. In this study, the flexural performance of stiffened slender cold-formed square tube beams filled with normal concrete was investigated. Fourteen (14) simply supported CFST specimens were tested under static bending loads, stiffened with different shapes and numbers of steel stiffeners that were provided at the inner sides of the tubes. Additional finite element (FE) CFST models were developed to further investigate the influence of using internal stiffeners with varied thickness. The results of tests and FE analyses indicated that the onset of local buckling, that occurs at the top half of the stiffened CFST beam's cross-section at mid-span was substantially restricted to a smaller region. Generally, it was also observed that, due to increased steel area provided by the stiffeners, the bending capacity, flexural stiffness and energy absorption index of the stiffened beams were significantly improved. The average bending capacity and the initial flexural stiffness of the stiffened specimens for the various shapes, single stiffener situations have increased of about 25% and 39%, respectively. These improvements went up to 45% and 60%, for the double stiffeners situations. Moreover, the bending capacity and the flexural stiffness values obtained from the experimental tests and FE analyses validated well with the values computed from equations of the existing standards.

Effect of solution temperature on the mechanical properties of dual-cure resin cements

  • Kang, En-Sook;Jeon, Yeong-Chan;Jeong, Chang-Mo;Huh, Jung-Bo;Yun, Mi-Jung;Kwon, Yong-Hoon
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권2호
    • /
    • pp.133-139
    • /
    • 2013
  • PURPOSE. This study was to evaluate the effect of the solution temperature on the mechanical properties of dualcure resin cements. MATERIALS AND METHODS. For the study, five dual-cure resin cements were chosen and light cured. To evaluate the effect of temperature on the specimens, the light-cured specimens were immersed in deionized water at three different temperatures (4, 37 and $60^{\circ}C$) for 7 days. The control specimens were aged in a $37^{\circ}C$ dry and dark chamber for 24 hours. The mechanical properties of the light-cured specimens were evaluated using the Vickers hardness test, three-point bending test, and compression test, respectively. Both flexural and compressive properties were evaluated using a universal testing machine. The data were analyzed using a two way ANOVA with Tukey test to perform multiple comparisons (${\alpha}$=0.05). RESULTS. After immersion, the specimens showed significantly different microhardness, flexural, and compressive properties compared to the control case regardless of solution temperatures. Depending on the resin brand, the microhardness difference between the top and bottom surfaces ranged approximately 3.3-12.2%. Among the specimens, BisCem and Calibra showed the highest and lowest decrease of flexural strength, respectively. Also, Calibra and Multilink Automix showed the highest and lowest decrease of compressive strength, respectively compared to the control case. CONCLUSION. The examined dual-cure resin cements had compatible flexural and compressive properties with most methacrylate-based composite resins and the underlying dentin regardless of solution temperature. However, the effect of the solution temperature on the mechanical properties was not consistent and depended more on the resin brand.

일축대칭 FRP 부재의 전체좌굴에 관한 실험적 연구 (Experimental Study on Global Buckling of Singly Symmetric FRP Members)

  • 이승식
    • 대한토목학회논문집
    • /
    • 제26권1A호
    • /
    • pp.99-106
    • /
    • 2006
  • 일축대칭의 단면특성을 갖는 T형 부재는 단면의 특성상 축방향 압축력으로 인하여 전체좌굴이 발생할 경우 휨-비틀림 좌굴이 지배모드가 된다. 인발성형 T형 부재의 휨-비틀림 좌굴거동을 실험적 연구를 통하여 알아보았다. E-glass/vinylester와 E-glass/polyester로 만들어진 2종류의 인발성형 부재가 사용되었으며, 보강층의 배치, 보강층의 두께, 구성물질의 부피비, 역학적 성질 등을 실험적으로 규명하였다. 좌굴실험에서 휨 및 비틀림에 대한 단순지지 조건을 만족시키기 위해서 knife edge를 사용하였으며, 3개의 potentiometer를 사용하여 실험체의 횡변위와 비틀림각을 측정하였다. 모든 실험체에 휨-비틀림 좌굴이 발행하였으며, 대부분의 실험체가 후좌굴 강도를 가지고 있음을 알 수 있었다.

일방향 혼합방사형 탄소섬유/폴리아미드 6 복합재료판의 제작조건과 굽힘파괴거동 (Fabrication of unidirectional commingled-yarn-based carbon fiber/polyamide 6 composite plates and their bend fracture performances)

  • 최낙삼
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.416-427
    • /
    • 1998
  • Unidirectional commingled-yarn-based carbon fiber(CF)/polyamide(PA) 6 composite was fabricated under molding pressures of 0.4, 0.6 and 1.0 MPa to study its flexural deformation and fracture behavior. Fiber/matrix interfacial bonding area became larger with an increase of molding pressure from 0.4 to 0.6 MPa. For molding pressures .geq. 0.6 MPa, good flexural performance of similar magnitudes was attained. For the fracture test, four kinds of notch direction were adopted : edgewise notches parallel (L) and transverse (T) to the major direction of fiber bundles, and flatwise notches parallel(ZL) and perpendicular(ZT) to this direction. Nominal bend strength for L and ZL specimens exhibited high sensitivity to notching. ZL specimens revealed the lowest values of the critical stress intensity factor $K_c$ which was slightly superior to those of unfilled PA6 matrix. Enlargement of the compression area for T specimens was analyzed by means of the rigidity reduction resulting from the fracture occurrence.

Flexural behavior of cold-formed steel concrete composite beams

  • Valsa Ipe, T.;Sharada Bai, H.;Manjula Vani, K.;Zafar Iqbal, Merchant Mohd
    • Steel and Composite Structures
    • /
    • 제14권2호
    • /
    • pp.105-120
    • /
    • 2013
  • Flexural behavior of thin walled steel-concrete composite sections as cross sections for beams is investigated by conducting an experimental study supported by applicable analytical predictions. The experimental study consists of testing up to failure, simply supported beams of effective span 1440 mm under two point loading. The test specimens consisted of composite box and channel (with lip placed on tension side and compression side) sections, the behavior of which was compared with companion empty sections. To understand the role of shear connectors in developing the composite action, some of the composite sections were provided with novel simple bar type and conventional bolt type shear connectors in the shear zone of beams. Two RCC beams having equivalent ultimate moment carrying capacities as that of composite channel and box sections were also considered in the study. The study showed that the strength to weight ratio of composite beams is much higher than RCC beams and ductility index is also more than RCC and empty beams. The analytical predictions were found to compare fairly well with the experimental results, thereby validating the applicability of rigid plastic theory to cold-formed steel concrete composite beams.