• Title/Summary/Keyword: flexural adhesion

Search Result 114, Processing Time 0.016 seconds

Numerical study on structural reinforced effects of concrete lining by spray-applied waterproofing membrane (차수용 박층 멤브레인 설치에 따른 콘크리트 라이닝의 구조적 보강효과에 관한 수치해석 연구)

  • Lee, Chulho;Lee, Kicheol;Kim, Dongwook;Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.551-565
    • /
    • 2017
  • A spray-applied waterproofing membrane which consists of polymers has a relatively higher constructability and adhesion than the conventional sheet-type waterproofing materials. Additionally, the spray-applied waterproofing membrane generally shows a waterproofing ability as a composite structure with shotcrete or concrete lining. Because its purpose is waterproofing at the structure, structural effects were not well reported than waterproofing abilities. In this study, structural effects of the membrane-attached concrete lining were evaluated using 3-point bending test by the numerical method. From the analysis, a load-displacement behavior of the concrete lining and fracturing energy after yielding were compared with various conditions. Consequently, concrete lining with spray-applied waterproofing membrane shows higher flexural strength and fracturing energy than the single-layer concrete lining.

Dielectric Properties of Semi-IPN Poly(phenylene oxide) Blend/$BaTiO_3$ Composites with Type of Cross-linker (가교체 종류에 따른 Semi-IPN Poly(phenylene oxide) 블렌드와 $BaTiO_3$ 복합재료의 유전특성)

  • Jang, Yong-Kyun;Lee, Ho-Il;Seong, Won-Mo;Park, Sang-Hoon;Yoon, Ho-Gyu
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.224-229
    • /
    • 2009
  • The dielectric properties of semi-IPN poly(phenylene oxide)(PPO) blend/$BaTiO_3$(BT) composites are investigated. The composites are fabricated via melt-mixing of crosslinker and peroxide in precursor PPO composite obtained by precipitating the suspension consisted of PPO, BT and toluene into methylethyl ketone, poor solvent of PPO. The permittivity of the precursor PPO composites shows higher value than that of integral-blended PPO composites by extruder and coincides with the theoretical value calculated by logarithmic rule of mixture. The blend of PPO and cross-linked triallyl isocyanurate is most effective for lowering the permittivity and loss tangent owing to the suppression of the orientation polarization of matrix. In contrast, 4,4'-(1,3-phenylene diisopropylidene) bisaniline, which has amine unit in its structure, increases the permittivity as well as loss tangent of the composite, but it has the ability to densify the matrix resin and the interfacial adhesion between the matrix and filler to improves flexural strength and modulus.

Effect of High-molecular-weight Maleic Anhydride-grafted Polylactic Acid Compatibilizer on the Properties of Polylactic acid-based Wood Polymer Composites (말레산 무수물로 그래프트된 고분자량의 폴리락트산 상용화제가 폴리락트산 기반의 합성목재에 미치는 영향)

  • Han, Dong-Heon;Lee, Jong In;Oh, Seung-Ju;Nam, Byeong Uk;Bae, Jin Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.275-282
    • /
    • 2021
  • High-molecular-weight maleic anhydride-grafted polylactic acids (HMMA-g-PLA) compatibilizers were prepared by melt grafting in a twin screw extruder using di(tert-butyl-perxoyisopropyl)benzene (PK-14; as initiator), maleic anhydride (MA), and divinylbenzene (DVB). To determine the properties of the prepared HMMA-g-PLA compatibilizers, Fourier transform infrared (FTIR), Melt index (MI), and back-titration analyses were performed. On increasing DVB concentration, grafting yield of HMMA-g-PLA increased but MI decreased because 𝛽-scission of PLA was restrained by the DVB, and thus, the molecular weight of HMMA-g-PLA increased. PLA-based wood-plastic composites (WPCs) were prepared using HMMA-g-PLA by melt blending through a single screw extruder. The flexural and impact strengths of WPCs compatibilized with HMMA-g-PLA were greater than those of WPCs produced without HMMA-g-PLA. Scanning electron microscope (SEM) studies indicated that increased mechanical properties were caused by excellent interfacial adhesion between PLA and wood fibers due to the addition of HMMA-g-PLA. However, rather high contents of HMMA-g-PLA reduced the mechanical properties of WPCs. We believe that lower molecular-weight of HMMA-g-PLA added as an compatibilizer, compared with PLA polymer, caused the reduction of mechanical properties.

The Influence of Admixture of Lignosulfonic Acid Type on the Strength of Mortar (Lignosulfonic Acid계(系) 감수제(減水劑)가 모르터의 강도(强度)에 미치는 영향(影響))

  • Kim, Han Young;Kim, Seong Wan
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.1
    • /
    • pp.75-85
    • /
    • 1985
  • This study is intended to find out the influence of Lignosulfonic Acid Type Admixture on compressive, tensile, flexural strength and dispersing action of mortar, and fixation of by-product of pulp industry. 1. The more Pozzolith-84 is added, the larger flow value is. The admixture of lignosulfonic acid type adhere to cement particles and the surface potential of particles is generated. On account of the repulsion among the cement particles, they are dispersed and the mortar get workable, so the production cost of precast product is curtailed and the amount of cement is reduced in a certain workability of mortar. 2. The strength of mortar is greater than plain mortar when P/C added is 0.2 and 0.4%. As time passed the potential energy is reduced and the distance of particles which lignosulfonic acid adhered to get near according as the amount of adhesion is increased. The setting and hardening reaction of morter is occurred in close state, so the strength of mortar is increased a little. The strength of mortar is less than plain mortar when amount P/C added is 0.8%. Pozzolith-84 is mainly composed of lignosulfonic acid and lignin does not influence the hardening of mortar, therefore the remained $SO_3$, $SO_3H$ are the reason of decrease of strength. 3. There is high significance between specific gravity and compressive strength. The larger specific gravity is, the more compressive strength is increased. There is high significance between 7 day's strength and 28 day's strength. The larger compressive strength is, the more tensile and flexural strength are increased. 4. Since Pozzolith-84 is a by-product of pulp industry, by using the Pozzolith-84 admixture the concreate quality is improved. The water pollusion is reduced according to fix by-products in concrete structure.

  • PDF