• 제목/요약/키워드: flexible joints

검색결과 123건 처리시간 0.022초

Oxidation and Repeated-Bending Properties of Sn-Based Solder Joints After Highly Accelerated Stress Testing (HAST)

  • Kim, Jeonga;Park, Cheolho;Cho, Kyung-Mox;Hong, Wonsik;Bang, Jung-Hwan;Ko, Yong-Ho;Kang, Namhyun
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.678-688
    • /
    • 2018
  • The repeated-bending properties of Sn-0.7Cu, Sn-0.3Ag-0.7Cu (SAC0307), and Sn-3.0Ag-0.5Cu (SAC305) solders mounted on flexible substrates were studied using highly accelerated stress testing (HAST), followed by repeated-bending testing. In the Sn-0.7Cu joints, the $Cu_6Sn_5$ intermetallic compound (IMC) coarsened as the HAST time increased. For the SAC0307 and SAC305 joints, the $Ag_3Sn$ and $Cu_6Sn_5$ IMCs coarsened mainly along the grain boundary as the HAST time increased. The Sn-0.7Cu solder had a high contact angle, compared to the SAC0307 and SAC305 solders; consequently, the SAC0307 and SAC305 solder joints displayed smoother fillet shapes than the Sn-0.7Cu solder joint. The repeated-bending for the Sn-0.7Cu solder produced the crack initiated from the interface between the Cu lead wire and the solder, and that for the SAC solders indicated the cracks initiated at the surface, but away from the interface between the Cu lead wire and the solder. Furthermore, the oxide layer was thickest for Sn-0.7Cu and thinnest for SAC305, regardless of the HAST time. For the SAC solders, the crack initiation rate increased as the oxide layer thickened and roughened. $Cu_6Sn_5$ precipitated and grew along the grain and subgrain boundaries as the HAST time increased, embrittling the grain boundary at the crack propagation site.

탄성 다물체계의 체계적인 동역학적 해석 (A Systematic Formulation for Dynamics of Flexible Multibody Systems)

  • 이병훈;유완석
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2483-2490
    • /
    • 1993
  • This paper presents a systematic formulation for the kinematic and dynamic analysis of flexible multibody systems. The system equations of motion are derived in terms of relative and elastic coordinates using velocity transformation technique. The position transformation equations that relate the relative and elastic coordinates to the Cartesian coordinates for the two contiguous flexible bodies are derived. The velocity transformation matrix is derived systematically corresponding to the type of kinematic joints connecting the bodies and system path matrix. This matrix is employed to represent the equations of motion in relative coordinate space. Two examples are taken to test the method developed here.

유한요소및 모달감소법을 이용한 유연로보트팔 운동방정식의 정식화 (Formulation of the equation of motion for flexible robotics arms by using the finite element and modal reduction method)

  • 김창부;유영선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.533-538
    • /
    • 1991
  • In the design and operation of robot arms with flexible links, the equations of motion are required to exactly model the interaction between rigid motion and elastic motion and to be formulated efficiently. Thus, the flexible link is represented on the basis of the D-H rigid link representation to measure the elastic deformation. The equations of motion of robot arms, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated by using F.E.M. to model complex shaped links systematically and by eliminating elastic mode of higher order that does not largely affect motion to reduce the number of elastic degree of freedom. Finally, presented is the result of simulation to flexible robotic arm whose joints are controlled by direct or PD control,

  • PDF

A simplified method for evaluation of shear lag stress in box T-joints considering effect of column flange flexibility

  • Doung, Piseth;Sasakia, Eiichi
    • Structural Engineering and Mechanics
    • /
    • 제73권2호
    • /
    • pp.167-179
    • /
    • 2020
  • This study provides a simplified method for the evaluation of shear lag stress in rectangular box T-joints. The occurrence of shear lag phenomenon in the box T-joint generates stress concentration localized at both web-flange junctions of the beam, which leads to cracking or failure in the weld region of the joint. To prevent such critical circumstance, peak stress at the weld region is required to be checked during a preliminary design stage. In this paper, the shear lag stresses in the T-joints were evaluated using least-work solution in which the longitudinal displacements of the beam flange and web were presumed. The evaluation process considered particularly the effect of column flange flexibility, which was represented by an axial spring model, on the shear lag stress distribution. A simplified method for stress evaluation was provided to avoid solving complex mathematical problems using a stress modification factor βs from a parametric study. The results showed that the proposed method was valid for predicting the shear lag stress in the box T-joints manually, as well compared with finite element results. The results are further summarized, discussed, and clarified that more flexible column flange caused higher stress concentration.

Component method를 이용한 철골 보-기둥 죠인트의 강성평가 (Stiffness Evaluation of Steel Beam-to-Column Joints Using Component method)

  • 양철민;조지은;김영문
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.243-250
    • /
    • 2004
  • This paper reports on the evaluation of the initial stiffness of steel joints using component method as well as experimental tests. The so-called component method corresponds precisely to a simplified mechanical model composed of extensional springs and rigid links, whereby the joint is simulated by an appropriate choice of rigid and flexible components. An application to a cantilever beam-to-column steel joint is presented and compared to the experimental results obtained under cyclic loading condition. Comparison between numerical and experimental results allows to conclude that the numerical model is able to simulate, with a good level of accuracy for initial stiffness, the behaviour of beam-to-column joints.

  • PDF

Numerical analysis of segmental tunnel linings - Use of the beam-spring and solid-interface methods

  • Rashiddel, Alireza;Hajihassani, Mohsen;Kharghani, Mehdi;Valizadeh, Hadi;Rahmannejad, Reza;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • 제29권4호
    • /
    • pp.471-486
    • /
    • 2022
  • The effect of segmental joints is one of main importance for the segmental lining design when tunnels are excavated by a mechanized process. In this paper, segmental tunnel linings are analyzed by two numerical methods, namely the Beam-Spring Method (BSM) and the Solid-Interface Method (SIM). For this purpose, the Tehran Subway Line 6 Tunnel is considered to be the reference case. Comprehensive 2D numerical simulations are performed considering the soil's calibrated plastic hardening model (PH). Also, an advanced 3D numerical model was used to obtain the stress relaxation value. The SIM numerical model is conducted to calculate the average rotational stiffness of the longitudinal joints considering the joints bending moment distribution and joints openings. Then, based on the BSM, a sensitivity analysis was performed to investigate the influence of the ground rigidity, depth to diameter ratios, slippage between the segment and ground, segment thickness, number of segments and pattern of joints. The findings indicate that when the longitudinal joints are flexible, the soil-segment interaction effect is significant. The joint rotational stiffness effect becomes remarkable with increasing the segment thickness, segment number, and tunnel depth. The pattern of longitudinal joints, in addition to the joint stiffness ratio and number of segments, also depends on the placement of longitudinal joints of the key segment in the tunnel crown (similar to patterns B and B').

제어기강성이 로봇관절의 진동에 미치는 영향 (The Effects of Controller Stiffness on the Vibration of Robot Joints)

  • 경현태;김재원;김문상
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.260-270
    • /
    • 1994
  • With the prevalent use of robot, the interests in moving speed of robot have been increasing for the purpose of upgrading performance of production. But the faster robot manipulator moves, the worse working accuracies are. And mechanical vibration is more and more serious with the increment of the moving speed of robot. So, the study on the cause and control method of robot vibration is one of the points of issue in robotics. This paper focuses on the vibration of 3 DOF parallel link drive mechanism robot. We assume that links of robot manipulator are `rigid' and joints are `flexible elements'. Governing equations of robot system including controller, servo amplifier, D.C servo motor, transmission with elasticity, and manipulator dynamics are derived. On the basis of modelling, we define `controller stiffness' by the proportional gain of controller and `stiffness of transmission'. Numerical and experimental research is performed to study vibration phenomena of robot induced from the variation of these two defined stiffnesses, and its results are shown.

겹치기 이음부의 설계변수 변화에 따른 고유진동수의 예측 (Prediction of Natural Frequency via Change in Design Variable on Connection Area of Lap Joint)

  • 윤성호
    • 한국기계가공학회지
    • /
    • 제18권11호
    • /
    • pp.57-62
    • /
    • 2019
  • This paper describes the prediction of eigenfrequencies due to changes in stiffness and mass in the connection area of the lap joint beam in terms of linear and torsional stiffness as well as connection length. The sensitivities of mass and stiffness in the finite element model were derived by using the first-order differential and algebraic equation and were thereafter applied to obtain new natural frequencies that were compared with theoretical exact solutions. Newly predicted natural frequencies due to only a change in stiffness were in relatively good agreement with those in lower modes for rigid joints, while further investigation was needed for flexible joints. On the other hand, only the change in mass resulted in a large discrepancy in the flexible joint case. It may be strongly anticipated that this study will provide a useful tool for estimating modal parameters by change in any design variable, such as the structural dimension, material property, or connection type for a large-scale structure, even though the proposed methodology is currently limited to a jointed beam.

유연 로보트팔의 동특성 해석에 관한 연구 (A Study on the Dynamic Analysis for Flexible Robotic Arms)

  • 김창부;유영선
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.107-116
    • /
    • 1993
  • In the design and operation of robitic arm with flexible links, the equation of motion are required to exactly model the interaction between rigid body motion and elastic motion and to be formulated efficientlyl. In this paper, the flexible link is represented by applying the D-H rigid link representation method to measure the elestic deformation. And the equations of motion of robotic arm, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated from the principle of virtual power. Dynamic characteristics due to elastic deformation of each link are obtained by using F. E. M to model complex shaped link acurately and by eliminating elastic modes of higher order that do not largely affect motion to reduce the number of elastic degrees of freedom. Also presented is the result of simulation of flexible robotic arms whose joints are controlled by direct or PD control.

  • PDF

비선형 시스템의 동적 출력 궤환 수동화의 유연 관절 로봇에의 적용 (Dynamic Output Feedback Passivation of Nonlinear Systems with Application to Flexible Joint Robots)

  • 손영익;임승철;김갑일
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1256-1263
    • /
    • 2004
  • Output feedback passivation problem is studied when the given system is not minimum-phase or does not have relative degree one. Using a parallel connection with an additional dynamics, the authors provide a dynamic output feedback control law which renders the composite system passive. Sufficient conditions are presented under which the composite system is output feedback passive. As an application of the dynamic passivation scheme, a point-to-point control law for a flexible joint robot is presented when only the position measurements are available. This provides an alternative way of replacing the role of the velocity measurements for the proportional-derivative (PD) feedback law. The performance of the proposed control law is illustrated in the simulation studies of a manipulator with three revolute elastic joints.