• Title/Summary/Keyword: flexibility matrix

Search Result 220, Processing Time 0.022 seconds

Optimum Design of a Helicopter Tailrotor Driveshaft Using Flexible Matrix Composite (유연복합재를 이용한 헬리콥터 꼬리날개 구동축의 최적 설계)

  • Shin, Eung-Soo;Hong, Eul-Pyo;Lee, Kee-Nyeong;Kim, Ock-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1914-1922
    • /
    • 2004
  • This paper provides a comprehensive study of optimum design of a helicopter tailrotor driveshaft made of the flexible matrix composites (FMCs). Since the driveshaft transmits power while subjected to large bending deformation due to aerodynamic loadings, the FMCs can be ideal for enhancing the drivetrain performance by absorbing the lateral deformation without shaft segmentation. However, the increased lateral flexibility and high internal damping of the FMCs may induce whirling instability at supercritical operating conditions. Thus, the purpose of optimization in this paper is to find a set of tailored FMC parameters that compromise between the lateral flexibility and the whirling stability while satisfying several criteria such as torsional buckling safety and the maximum shaft temperature at steadystate conditions. At first, the drivetrain was modeled based on the finite element method and the classical laminate theory with complex modulus approach. Then, an objective function was defined as a combination of an allowable bending deformation and external damping and a genetic algorithm was applied to search for an optimum set with respect to ply angles and stack sequences. Results show that an optimum laminate consists of two groups of layers: (i) one has ply angles well below 45$^{\circ}$ and the other far above 45$^{\circ}$ and (ii) the number of layers with low ply angles is much bigger than that with high ply angles. It is also found that a thick FMC shaft is desirable for both lateral flexibility and whirling stability. The genetic algorithm was effective in converging to several local optimums, whose laminates exhibit similar patterns as mentioned above.

Two new triangular finite elements containing stable open cracks

  • Rezaiee-Pajand, Mohammad;Gharaei-Moghaddam, Nima
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.99-110
    • /
    • 2018
  • The focus of this paper is on the elements with stable open cracks. To analyze plane problems, two triangular elements with three and six nodes are formulated using force method. Flexibility matrices of the elements are derived by combining the non-cracked flexibility and the additional one due to crack, which is computed by utilizing the local flexibility method. In order to compute the flexibility matrix of the intact element, a basic coordinate system without rigid body motions is required. In this paper, the basic system origin is located at the crack center and one of its axis coincides with the crack surfaces. This selection makes it possible to formulate elements with inclined cracks. It is obvious that the ability of the suggested elements in calculating accurate natural frequencies for cracked structures, make them applicable for vibration-based crack detection.

Experimental and numerical structural damage detection using a combined modal strain energy and flexibility method

  • Seyed Milad Hosseini;Mohamad Mohamadi Dehcheshmeh;Gholamreza Ghodrati Amiri
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.555-574
    • /
    • 2023
  • An efficient optimization algorithm and damage-sensitive objective function are two main components in optimization-based Finite Element Model Updating (FEMU). A suitable combination of these components can considerably affect damage detection accuracy. In this study, a new hybrid damage-sensitive objective function is proposed based on combining two different objection functions to detect the location and extent of damage in structures. The first one is based on Generalized Pseudo Modal Strain Energy (GPMSE), and the second is based on the element's Generalized Flexibility Matrix (GFM). Four well-known population-based metaheuristic algorithms are used to solve the problem and report the optimal solution as damage detection results. These algorithms consist of Cuckoo Search (CS), Teaching-Learning-Based Optimization (TLBO), Moth Flame Optimization (MFO), and Jaya. Three numerical examples and one experimental study are studied to illustrate the capability of the proposed method. The performance of the considered metaheuristics is also compared with each other to choose the most suitable optimizer in structural damage detection. The numerical examinations on truss and frame structures with considering the effects of measurement noise and availability of only the first few vibrating modes reveal the good performance of the proposed technique in identifying damage locations and their severities. Experimental examinations on a six-story shear building structure tested on a shake table also indicate that this method can be considered as a suitable technique for damage assessment of shear building structures.

Identification of damage using natural frequencies and system moments

  • Hassiotis, S.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.285-297
    • /
    • 1999
  • A method is presented to find the location and magnitude of damage in a structure using data from dynamic tests. The test data include a combination of natural frequency measurements, taken before and after the occurrence of damage, and response measurements taken after damage. An algorithm is developed to identify localized increases in the flexibility of the structural members. Increases in flexibility are attributed to damage. The algorithm uses the sensitivity of the flexibility matrix to changes in the natural frequencies of the structure to identify the damage. A set of under determined equations is solved using an objective function which is derived from measurements of the system moments. Damage ranging from 10 to 60% increase in the flexibility of a member was successfully identified in a 50 d.o.f. structure, using a small number of natural frequency and velocity measurements.

Evaluating the spread plasticity model of IDARC for inelastic analysis of reinforced concrete frames

  • Izadpanaha, Mehdi;Habibi, AliReza
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.169-188
    • /
    • 2015
  • There are two types of nonlinear analysis methods for building frameworks depending on the method of modeling the plastification of members including lumped plasticity and distributed plasticity. The lumped plasticity method assumes that plasticity is concentrated at a zero-length plastic hinge section at the ends of the elements. The distributed plasticity method discretizes the structural members into many line segments, and further subdivides the cross-section of each segment into a number of finite elements. When a reinforced concrete member experiences inelastic deformations, cracks tend to spread form the joint interface resulting in a curvature distribution. The program IDARC includes a spread plasticity formulation to capture the variation of the section flexibility, and combine them to determine the element stiffness matrix. In this formulation, the flexibility distribution in the structural elements is assumed to be the linear. The main objective of this study is to evaluate the accuracy of linear flexibility distribution assumed in the spread inelasticity model. For this purpose, nonlinear analysis of two reinforced concrete frames is carried out and the linear flexibility models used in the elements are compared with the real ones. It is shown that the linear flexibility distribution is incorrect assumption in cases of significant gravity load effects and can be lead to incorrect nonlinear responses in some situations.

Active Control of Reaction Forces for Flexible Structures (유연 구조물의 능동 반력 제어기 설계)

  • 김주형
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.68-75
    • /
    • 2001
  • A method for actively controlling dynamic reaction forces in flexible structures subject to persistent excitations is presented. Since reaction forces are not directly measured in flexible structures, reaction forces are estimated by using the Kalman filter. The estimated reaction force is used as an error signal in the adaptive feedforward disturbance cancellation controller. In order to compensate the static effect of the truncated modes in the reaction forces, the residual flexibility matrix is used with the Kalman filter. The paper presents the formulation of the reaction forces in conjunction with the Kalman filter estimator and the adaptive feedforward controller. The results show that the dynamic reaction forces at its supports in a flexible beam test rir are well suppressed.

  • PDF

A Study on Dynamic Behavior of Cantilever Pipe Conveying Fluid with Crack and Moving Mass (I) - Focused on the Amplitude Characteristics - (크랙과 이동질량을 가진 유체유동 외팔 파이프의 동특성에 관한 연구(I) - 진폭특성을 중심으로 -)

  • Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1295-1303
    • /
    • 2004
  • In this Paper a dynamic behavior of a cracked cantilever pipe conveying fluid with the moving mass is presented. It has the results focused on the response characteristics. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The cracked section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. When the fluid velocity is constant, the influences of the crack severity, the position of the crack, the moving mass and its velocity, and the coupling of these factors on the tip-displacement of the cantilever pipe are depicted.

A Study on Dynamic Behavior of Cantilever Pipe Conveying Fluid with Crack and Moving mass (II)-Focused on the Frequency Change- (크랙과 이동질량을 가진 유체유동 외팔 파이프의 동특성에 관한 연구(II)-진동수 변화를 중심으로-)

  • Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1304-1313
    • /
    • 2004
  • In this paper a dynamic behavior of a cracked cantilever pipe conveying fluid with the moving mass is presented. It has the results focused on the frequency change. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. When the velocity of the moving mass is constant, the influences of the crack severity, the position of the crack, the moving mass, and the coupling of these factors on the frequencies of the cantilever pipe are depicted.

Effect of Chassis Flexibility on Ride Quality (샤시의 강성이 운전석 승차감에 미치는 영향 분석)

  • 김광석;유완석;이기호;김기태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.127-136
    • /
    • 1996
  • Dynamic analysis of a three-axle heavy truck is carried out with rigid body model and flexible body model. To see the effects of chassis flexibility, the chassis is modeled as flexible body. The mass matrix, stiffness matrix, and vibration normal modes of the chassis are obtained by a finite element analysis program, and four vibration normal modes are used in the flexible body model. The vehicle model consisting of a frame, a cab, suspensions, an engine, a deck, a seat, and tires, has total 77 degrees of freedom. The result shows that the peaked acceleration in the flexible model is lower than that of the rigid body model.

  • PDF

Influence of Tip mass on Dynamic Behavior of Cracked Cantilever Pipe Conveying Fluid with Moving Mass

  • Yoon Han-Ik;Son In-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1731-1741
    • /
    • 2005
  • In this paper, we studied about the effect of the open crack and a tip mass on the dynamic behavior of a cantilever pipe conveying fluid with a moving mass. The equation of motion is derived by using Lagrange's equation and analyzed by numerical method. The cantilever pipe is modelled by the Euler-Bernoulli beam theory. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influences of the crack, the moving mass, the tip mass and its moment of inertia, the velocity of fluid, and the coupling of these factors on the vibration mode, the frequency, and the tip-displacement of the cantilever pipe are analytically clarified.