• Title/Summary/Keyword: flaws

Search Result 579, Processing Time 0.023 seconds

The coalescence and strength of rock-like materials containing two aligned X-type flaws under uniaxial compression

  • Zhang, Bo;Li, Shucai;Yang, Xueying;Xia, Kaiwen;Liu, Jiyang;Guo, Shuai;Wang, Shugang
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.47-56
    • /
    • 2019
  • Crossing (X-type) flaws are commonly encountered in rock mass. However, the crack coalescence and failure mechanisms of rock mass with X-type flaws remain unclear. In this study, we investigate the compressive failure process of rock-like specimens containing two X-type flaws aligned in the loading direction. For comparison purposes, compressive failure behavior of specimens containing two aligned single flaws is also studied. By examining the crack coalescence behavior, two characteristics for the aligned X-type flaws under uniaxial compression are revealed. The flaws tend to coalesce by cracks emanating from flaw tips along a potential path that is parallel to the maximum compressive stress direction. The flaws are more likely to coalesce along the coalescence path linked by flaw tips with greater maximum circumferential stress if there are several potential coalescence paths almost parallel to the maximum compressive stress direction. In addition, we find that some of the specimens containing two aligned X-type flaws exhibit higher strengths than that of the specimens containing two single parallel flaws. The two underlying reasons that may influence the strengths of specimens containing two aligned X-type flaws are the values of flaw tips maximum circumferential stresses and maximum shear stresses, as well as the shear crack propagation tendencies of some secondary flaws. The research reported here provides increased understanding of the fundamental nature of rock/rock-like material failure in uniaxial compression.

Crack initiation and fragmentation processes in pre-cracked rock-like materials

  • Lee, Jooeun;Hong, Jung-Wuk
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1047-1059
    • /
    • 2018
  • This paper focuses on the cracking and fragmentation process in rock materials containing a pair of non-parallel flaws, which are through the specimen thickness, under vertical compression. Several numerical experiments are conducted with varying flaw arrangements that affect the initiation and tensile wing cracks, shear crack growth, and crack coalescing behaviors. To obtain realistic numerical results, a parallelized peridynamics formulation coupled with a finite element method, which is able to capture arbitrarily occurring cracks, is employed. From previous studies, crack initiation and propagation of tensile wing cracks, horsetail cracks, and anti-wing cracks are well understood along with the coalescence between two parallel flaws. In this study, the coalescence behaviors, their fragmentation sequences, and the role of an x-shaped shear band in rock material containing two non-parallel flaws are discussed in detail on the basis of simulation results strongly correlated with previous experimental results. Firstly, crack initiation and propagation of tensile wing cracks and shear cracks between non-parallel flaws are investigated in time-history and then sequential coalescing behavior is analyzed. Secondly, under the effect of varying inclination angles of two non-parallel flaws and overlapping ratios between a pair of non-parallel flaws, the cracking patterns including crack coalescence, fragmentation, and x-shaped shear band are investigated. These numerical results, which are in good agreement with reported physical test results, are expected to provide insightful information of the fracture mechanism of rock with non-parallel flaws.

An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws

  • Yang, Sheng-Qi
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.541-557
    • /
    • 2015
  • This research aims to analyze the fracture coalescence characteristics of brittle sandstone specimen ($80{\times}160{\times}30mm$ in size) containing various flaws (a single fissure, double squares and combined flaws). Using a rock mechanics servo-controlled testing system, the strength and deformation behaviours of sandstone specimen containing various flaws are experimentally investigated. The results show that the crack initiation stress, uniaxial compressive strength and peak axial strain of specimen containing a single fissure are all higher than those containing double squares, while which are higher than those containing combined flaws. For sandstone specimen containing combined flaws, the uniaxial compressive strength of sandstone increase as fissure angle (${\alpha}$) increases from $30^{\circ}$ to $90^{\circ}$, which indicates that the specimens with steeper fissure angles can support higher axial capacity for ${\alpha}$ greater than $30^{\circ}$. In the entire deformation process of flawed sandstone specimen, crack evolution process is discussed detailed using photographic monitoring technique. For the specimen containing a single fissure, tensile wing cracks are first initiated at the upper and under tips of fissure, and anti-tensile cracks and far-field cracks are also observed in the deformation process; moreover anti-tensile cracks usually accompanies with tensile wing cracks. For the specimen containing double squares, tensile cracks are usually initiated from the top and bottom edge of two squares along the direction of axial stress, and in the process of final unstable failure, more vertical splitting failures are observed in the ligament region. When a single fissure and double squares are formed together into combined flaws, the crack coalescence between the fissure tips and double squares plays a significant role for ultimate failure of the specimen containing combined flaws.

A Study on the Impact Analysis of Security Flaws between Security Controls: An Empirical Analysis of K-ISMS using Case-Control Study

  • Kim, Hwankuk;Lee, Kyungho;Lim, Jongin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4588-4608
    • /
    • 2017
  • The measurement of information security levels is a very important but difficult task. So far, various measurement methods have studied the development of new indices. Note, however, that researches have focused on the problem of attaining a certain level but largely neglecting research focused on the issue of how different types of possible flaws in security controls affect each other and which flaws are more critical because of these effects. Furthermore, applying the same weight across the board to these flaws has made it difficult to identify the relative importance. In this paper, the interrelationships among security flaws that occurred in the security controls of K-ISMS were analyzed, and the relative impact of each security control was measured. Additionally, a case-control study was applied using empirical data to eliminate subjective bias as a shortcoming of expert surveys and comparative studies. The security controls were divided into 2 groups depending on whether or not a security flaw occurs. The experimental results show the impact relationship and the severity among security flaws. We expect these results to be applied as good reference indices when making decisions on the removal of security flaws in an enterprise.

Thermal Inspection of GFRP using Liquid Crystal (액정을 이용한 GFRP의 열적시험법에 관한 연구)

  • Kim, Y.H.;Kwon, O.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.2
    • /
    • pp.50-55
    • /
    • 1990
  • Flaws in GFRP(Glass Fiber Reinforced Plastics) were thermally detected using cholesteric liquid crystals. Presence of flaws changes the thermal conductivity of GFRP, and disturbs heat flow. When a uniform heat source is applied, the surface temperature of flawed region is different from that of sound region. The surface temperature distributions were measured by thermo-optic properties of liquid crystal. Since the colors of liquid crystal indicate temperature distribution of GFRP surface, the thermal disturbance by flaws could be detected. The locations of flaws in GFRP could be determined from the distribution of liquid crystal colors.

  • PDF

Fracture of Multiple Flaws in Uniaxial Compression (일축압축 상태하 다중 불연속면의 파괴에 대한 연구)

  • 사공명;안토니오보베
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.301-310
    • /
    • 2001
  • Gypsum blocks with sixteen flaws have been prepared and tested in uniaxial compression. Results from these experiments are compared with observations from the same material with two and three flaws. The results indicate that the cracking pattern observed in specimens wish multiple flaws is analogous to the pattern obtained in specimens with two and three flaws such as initiation and propagation of wing, and secondary cracks and coalescence. Wing cracks initiate at an angle with the flaw and propagate in a stable manner towards the direction of maximum compression. Secondary cracks initiate and propagate in a stable manner. As the load is increased, secondary cracks may propagate in an unstable manner and produce coalescence. Two types of secondary cracks are observed: quasi-coplanar, and oblique secondary cracks. Coalescence is produced by the linkage of two flaws: wing and/or secondary cracks. From the sixteen flaws test, four types of coalescence are observed. Observed types of coalescence and initiation stress of wing and secondary crackle depend on flaw geometries, such as spacing, continuity, flaw inclination angle, ligament angle, and steppings.

  • PDF

Estimation of the Number of Physical Flaws Using Effective POD (유효 POD를 이용한 물리적 결함 수의 추정)

  • Lee, Jae-Bong;Park, Jae-Hak;Kim, Hong-Deok;Chung, Han-Sub
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.42-48
    • /
    • 2006
  • The strategies of maintenance and operation are usually established based on the number of flaws and their size distribution obtained from nondestructive inspection in order to preserve safety of the plant. But non destructive inspection results are different from the physical flaws which really exist in the equipments. In case of a single inspection, it is easy to estimate the number of physical flaws using the POD curve. However, we may be faced with some difficulties in obtaining the number of physical flaws from the periodic in-service non destructive inspection data. In this study a simple method for estimating the number of physical flaws from periodic in-service nondestructive inspection data was proposed. In order to obtain the flaw growth history, the flaw growth was simulated using the Monte Carlo method and the flaw size and the corresponding POD value were obtained for each flaw at each periodic inspection time. The flaw growth rate used in the simulation was statistically calculated from the in-service inspection data. By repeating the simulation numerous flaw growth data could be generated and the effective POD curve was obtained as a function of flaw size. From the effective POD curve the number of physical flaws was obtained. The usefulness and convenience of the proposed method was evaluated from several applications and satisfactory results were obtained.

Experimental Verification on the Detectability of Surface Flaws at Fillet Weld Hills by Ultrasonic Method (초음파에 의한 필렛 용접힐부의 표면결함 검출능에 관한 실험적 검증)

  • 박익근;이철구
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.46-51
    • /
    • 2000
  • Ultrasonic nondestructive evaluation (UNDE) technique is commonly used for detecting inner defects in the materials. Recently, new methods are trying to apply for detecting surface and subsurface flaws using Rayleigh wave or creeping wave. These techniques, however, have following problems. Echo amplitude is remarkably affected by the surface conditions and discrimination of echo pattern is usually difficult because shear wave propagate in the material at the same time. We can apply surface SH-wave(which is horizontally polarized shear wave traveling along near surface layer) technique to detect surface flaws. In this paper, directivity, distance amplitude characteristics and detectability of surface flaws at fillet weld hills of the 5 MHz and 2 MHz surface flaws at fillet weld hills of the 5 MHz and 2 MHz surface Sh-wave are experimentally investigated. As a result of the study, it was found out that these techniques are valuable for the detection of fatigue cracks at fillet weld heels which can not be detected by other ultrasonic techniques such as angle beam technique and which are inaccessible for non-destructive testings e.g. MT(magnetic particle testing) or PT(liquid penetrant testing).

  • PDF

The effect of ultrasonic search units on the detectability and size evaluation of planar flaws (초음파(超音波) 탐촉자 특성(特性)이 판형결함(板形缺陷)의 크기 평가(評價)에 미치는 영향(影響))

  • Lee, J.P.;Kim, B.C.;Lim, H.T.;Joo, Y.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.6 no.2
    • /
    • pp.46-56
    • /
    • 1987
  • The effect of ultrasonic search units on the detectability and size evaluation of planar flaws was studied for thicker ferritic material using the technique of the DAC curve and reference level. Cylindrical holes were used as calibration reflectors. The planar flaws such as disc and band types were machined. They were detected and evaluated with different search units and sizing criteria. The value evaluated was compared with the actual dimension of planar flaws.

  • PDF

Ultrasonic Signal Analysis with DSP for the Pattern Recognition of Welding Flaws

  • Kim, Jae-Yeol;Cho, Gyu-Jae;Kim, Chang-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.106-110
    • /
    • 2000
  • The researches classifying the artificial flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including user defined function is developed and the total procedure is made up the digital signal processing, feature extraction, feature selection, classfier design. Specially it is composed with and discussed using the ststistical classfier such as the linear discriminant function classfier, the empirical Bayesian classfier.

  • PDF