• Title/Summary/Keyword: flavonol glycosides

Search Result 62, Processing Time 0.027 seconds

Flavonol Glycosides from the Wood of Platycarya strobilacea

  • Lee, Hak-Ju;Park, Young-Ki;Kwon, Yeong-Han;Lee, Sung-Suk;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.30-34
    • /
    • 2003
  • This study was carried out to investigate the constituents of Platycarya strobilacea (Juglandaceae) wood. To isolate compounds, wood was extracted with ethanol (EtOH) and then partitioned with petroleum ether, diethyl ether (Et2O) and ethyl acetate (EtOAc) successively. After partitioned, diethyl ether fraction was subjected to column chromatography with various solvent system in silica gel and/or Sephadex LH-20. Structures were elucidated by spectroscopic methods including MS, 1H, 13C and 2D-NMR experiments. Three compounds were isolated from the wood and identified as kaempferol 3-O-𝛼-L-rhamnopyranoside (afzelin, I), quercetin 3-O-𝛼-L-rhamnopyranoside (quercitrin, II), myricetin 3-O-𝛼-L-rhamnopyranoside (myricitrin, III).

Anti-cancer Activity of Flavonoids from Aceriphyllum rossii (돌단풍(Aceriphyllum rossii)에서 분리한 플라보노이드의 항암활성)

  • Ahn, Eun-Mi;Han, Jae-Taek;Kwon, Byoung-Mog;Kim, Sung-Hoon;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.309-315
    • /
    • 2008
  • The methanol extract from the aerial parts of Aceriphyllum rossii was fractionated into ethyl acetate, n-BuOH and $H_2O$ layers through solvent fractionation. Repeated silica gel column chromatography of EtOAc and n-BuOH layers afforded five flavonol glycosides. They were identified as astragalin (1), kaempferol 3-O-${\alpha}$-L-rhamnopyranosyl (1${\rightarrow}$6)-${\beta}$-D-glucopyranoside (2), rutin (3), kaempferol 3-O-${\alpha}$-L-rhamnopyranosyl (1${\rightarrow}$4)-${\alpha}$-L-rhamnopyranosyl 1${\rightarrow}$6)-${\beta}$-D-glucopyranoside (4), and quercetin 3-O-${\alpha}$-L-rhamnopyranosyl (1${\rightarrow}$4)-${\alpha}$-L-rhamnopyranosyl (1${\rightarrow}$6)-${\beta}$-D-glucopyranoside (5) on the basis of spectroscopic data. All of them showed an inhibition in farnesyl protein tranferase (FPTase) activity, and rutin (3) inhibited the growth of rat H-ras cell and the cell migration of human umbilical vein endothelial cells (HUVECs).

Physiologically active components and vasorelaxation effect of Vitis labruscana B. and Vitis coignetiae grapevine leaves at growth stages (켐벨얼리(Vitis labruscana B.)와 머루(Vitis coignetiae) 포도잎의 생육단계별 생리 활성 성분 및 혈관 이완능)

  • Yu, Jin-Ju;Kim, Hye-Yoom
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.40-45
    • /
    • 2021
  • Prior studies of physiologically active substances in grapes have focused only on the fruit, pericarp, and branches, as well as the pulp and seeds. The present study assessed the changes in quercetin-3-O-glucuronide (Q3OG) and flavonol glycoside content using grape leaves from Vitis labruscana B. and V. coignetiae at different growth stages and provided basic data for quality control. Content analysis showed that both varieties differed in Q3OG and flavonol glycoside content by growth stage, and the components were found to be high in the order of fruit, maturation, and coloration. Also, Vitis labruscana B. has a better vascular relaxation effect than Vitis coignetiae. These results suggest that in the use of grape leaves as a functional raw material, Q3OG and flavonol glycosides can be used as indicator components. In addition, if raw materials for each growth stage are mixed in a particular ratio, it will be a way to manage the specific efficacy and content of indicator components.

Peroxynitrite-scavenging Activity of the Halophyte Limonium tetragonum (염생식물 갯질경이의 Peroxynitrite 소거 활성)

  • Lee, Jung-Im;Kong, Chang-Suk;Jung, Myoung-Eun;Hong, Joo-Wan;Noh, Il;Seo, Young-Wan
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.185-191
    • /
    • 2011
  • Crude extracts of Limonium tetragonum and their solvent-partitioned fractions were evaluated for their potential to scavenge authentic $ONOO^-$, and $ONOO^-$ derived from 3-morpholinosydnonimine (SIN-1). Four flavonol glycosides (1-4) were isolated by activity-guided separation. Their chemical structures were elucidated by extensive 2 D NMR experiments and by comparison with published spectral data. These compounds were also estimated for their peroxynitrite scavenging effects. The scavenging ratios of compounds 1-4 on authentic $ONOO^-$ were 56, 37, 56, and 54%, respectively, at a concentration of 1 ${\mu}M$. On the other hand, the inbihition ratios of compounds 1-4 against $ONOO^-$ generation from SIN-1 were 59, 39, 44, and 54% at the same concentration, respectively.

Studies on the Constituents of Ulmus parvifolia (참느릅나무의 성분에 관한 연구)

  • Moon, Young-Hee;Rim, Gi-Ryong
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 1995
  • The bark of Ulmus parvifolia Jacq. (Ulmaceae) has been used for the treatment of gonorhea, edema, scabies and eczema marginatum. Previous investigations conducted with the heartwood and leaves have demonstrated it to contain sesquiterpenes as well as fat acids from the heartwood and flavonol glycosides from leaves. However, no phytochemical work has been done on the bark parts of this plant. Investigation of the phytochemical constituents in the barks of U. parvifolia has resulted in the isolation of sterols, sterol glucoside and a catechin glycoside, $(+)-catechin\;7-O-{\alpha}-{_L}-rhamnopyranoside$, all of which were isolated for the first time from this plant. Sterols were consisted of the three components, ${\beta}-sitosterol$, stigmasterol and campesterol in a ratio of 92.1:4.1:3.8, and sterol glucoside was identified as ${\beta}-sitosterol\;3-O-{\beta}-{_D}-glucoside$. The structure of the catechin $7-O-{\alpha}-{_L}-rhamnoside$ was established primarily by analysis of $^1H-and$ COSY-45 NMR, HMQC and HMBC and EI mass spectra of the heptaacetate. Especially, HMBC spectrum provides effective way for the determination of the point of attachment of the rhamnosyl group to catechin moiety.

  • PDF

Antioxidative Activity and Flavonol Glycosides Analysis in Callus Derived from Leaf Tissue of Ginkgo biloba L. (은행(Ginkgo biloba L.)의 잎 유래 캘러스의 항산화능력 및 플로보놀 배당체 검정)

  • Kim, Jung-Suk;Park, Hye-Jeong;Park, Hyeon-Yong
    • Korean Journal of Plant Resources
    • /
    • v.24 no.4
    • /
    • pp.461-471
    • /
    • 2011
  • This study was carried out to establish an in vitro culture method of callus having a high antioxidant activity from Ginkgo biloba L. Leaf explants were cultured on Murashige and Skoog's medium supplemented with various growth regulators. The explants were incubated in the dark or 3,000 lux cool-white light. Methanol extracts from incubated callus were evaluated for scavenging activity of the free radicals using DPPH. The best callus growth rate was achieved in MS medium combined with 10 ${\mu}M$ NAA and 5 ${\mu}M$ kinetin in the light condition. Total antioxidant activity of cell aggregates in suspension culture [MS medium supplemented with 10 ${\mu}M$ NAA in the light] was up to 80% of ascorbic acid. By means of HPLC analysis, quantification of the quercetin dehydrate and keamperol profiles from suspension callus was compared. Contents of quercetin dehydrate and keamperol from leaf extracts were 0.07 and 2.24 ${\mu}g/20{\mu}l$, and those from callus 0.56 and 0.18 ${\mu}g/20{\mu}l$, respectively.

Pharmacognostical Studies on the Folk Medicine "SaCheolNaMu" (민간약 사철나무의 생약학적 연구)

  • Park, Woo Sung;Chung, Hye-Jin;Bae, Ji-Yeong;Park, Jong Hee;Ahn, Mi-Jeong
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.4
    • /
    • pp.320-325
    • /
    • 2013
  • "SaCheolNaMu" has been used as a Korean folk medicine for the jaundice, lumbago and uterine diseases. Although a crude drug related to this folk medicine is sold in traditional herbal market, the botanical origin of this drug has not been pharmacognostically confirmed yet. In this study, the morphological and anatomical characteristics of the stem of Euonymus species growing in Korea, i.e. Euonymus japonica and E. fortunei var. radicans were studied to clarify the botanical origin of "SaCheolNaMu". As a result, it was found that these two species could be discriminated by the morphological criteria such as the thickness of cuticles, the number of collenchyma cell layers, and the frequency of druse and resinous substance. According to these criteria, it was elucidated that the commercial folk medicine "SaCheolNaMu" was the stem of E. japonica. Meanwhile, HPLC-DAD analysis on the 70% ethanolic extracts of two species showed significantly different HPLC profiles each other. The molecular ions of three characteristic peaks shown in the chromatogram of two species were identified by ESI-MS, and their structures were estimated to be flavonol glycosides.

In Vitro Peroxynitrite Scavenging Activity of 6-Hydroxykynurenic Acid and Other Flavonoids from Gingko biloba Yellow Leaves

  • Hyun, Sook-Kyung;Jung, Hyun-Ah;Chung, Hae-Young;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1074-1079
    • /
    • 2006
  • As part of our research on phytochemicals that exert protective effects against diseases related to reactive nitrogen species, we have evaluated the scavenging activity of the yellow leaves of Ginkgo biloba on $ONOO^{-}$. The methanol extract and ethyl acetate fraction obtained from yellow leaves of G. biloba evidenced a marked scavenging activity on authentic $ONOO^{-}$. Repeated column chromatography of the active ethyl acetate soluble fraction on silica gel, Sephadex LH-20, and RP-18, resulted in the purification of 15 known compounds, including sciadopitysin (1), ginkgolide B (2), bilobalide (3), isoginkgetin (4), kaempferol (5), luteolin (6), protocatechuic acid (7), bilobetin (8), amentoflavone (9), ${\beta}-sitosterol$ glucopyranoside (10), kaempferol 3-O-rhamnopyranoside (11), kaempferol 3-O-glucopyranoside (12), kaempferol $3-O-[{6^{'}-O-p-coumaroyl-{\beta}-D-glucopyranosyl(1{\rightarrow}2)-{\alpha}-L-rhamnopyranoside]$ (13), kaempferol 3-O-rutinoside (14), and 6-hydroxykynurenic acid (15). Among the compounds isolated, flavonoids (5, 6 and 11-14), protocatechuic acid (7), and 6-hydroxykynurenic acid (15) all exhibited marked scavenging activities on authentic $ONOO^{-}$. The $IC_{50}$ values of 5-7, 11-14 and 15 were as follows: $2.86{\pm}0.70,\;2.30{\pm}0.04,\;2.85{\pm}0.10,\;5.60{\pm}0.47,\;4.16{\pm}1.65,\;2.47{\pm}0.15,\;3.02{\pm}0.48,\;and\;6.24{\pm}0.27\;{\mu}M$, respectively. DL-Penicillamine ($IC_{50}=4.98{\pm}0.27\;{\mu}M$) was utilized as a positive control. However, the other compounds (1-4, 8-10) exerted no effects against $ONOO^{-}$.

Metabolic changes during adaptation to saline condition and stress memory of Arabidopsis cells

  • Chun, Hyun Jin;Park, Mi Suk;Lee, Su Hyeon;Jin, Byung-Jun;Cho, Hyun Min;Hong, Young-Shick;Kim, Min Chul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.175-175
    • /
    • 2017
  • To understand molecular mechanisms underlying adaptation of plant cells to saline stress and stress memory, we developed Arabidopsis callus suspension-cultured cells adapted to high salt. Adapted cells to high salt exhibited enhanced tolerance compared to control cells. Moreover, the salt tolerance of adapted cells was stably maintained even after the stress is relieved, indicating that the acquired salt tolerance of adapted cells was memorized. In order to characterize metabolic responses of plant cells during adaptation to high salt stress as well as stress memory, we compared metabolic profiles of salt-adapted and stress-memorized cells with control cells by using NMR spectroscopy. A principle component analysis showed clear metabolic discrimination among control, salt-adapted and stress-memorized cells. Compared with control cells, metabolites related to shikimate metabolism such as tyrosine, and flavonol glycosides, which are related to protective mechanism of plant against stresses were largely up-regulated in adapted cell lines. Moreover, coniferin, a precursor of lignin, was more abundant in salt-adapted cells than control cells. Cell morphology analysis using transmission electron microscopy indicated that cell wall thickness of salt-adapted cells was significantly induced compared to control cells. Consistently, salt adapted cells contained more lignin in their cell walls compared to control cells. The results provide new insight into mechanisms of plant adaptation to saline stress as well as stress memory in metabolic level.

  • PDF

Quercetin Glucoside Profiling of Fresh Onion (Allium cepa) and Aged Black Onion Using HPLC-ESI/MS/MS (HPLC-ESI/MS/MS를 이용한 생양파와 흑양파의 퀘세틴 배당체 분석)

  • Chung, Dong-Min;Kwon, Sun-Hwa;Chung, Young-Chul;Chun, Hyo-Kon
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.464-467
    • /
    • 2011
  • Quercetin is a major flavonoid present in onions, which acts as an antioxidant. Quercetin exists both as a free compound and conjugated with carbohydrates, primarily as glucosides in onion. Aged black onion was made through a 30 day aging process in which the onions were kept in an environment of $60^{\circ}C$ and high humidity (90% RH). Quercetin and quercetin glucosides were assayed in onion bulbs before and after the aging process, using high performance liquid chromatography-electrospray ion trap mass spectrometry (HPLC-ESI/MS/MS). Quercetin mono- and diglucosides were identified in fresh onion bulbs, whereas quercetin aglycone was the only form present in aged black onion bulbs. These findings indicate that the quercetin mono- and di-glucosides present in fresh onions undergo complete deglycosylation during the aging process. Such profiling will provide a rapid method that can be used to assess changes in the two major quercetin glycosides during the aging process of onion bulbs.