• Title/Summary/Keyword: flavan-3-ol

Search Result 33, Processing Time 0.018 seconds

Antioxidative activities on the extractives of Larix kaempferi Carr. Fallen Needles (일본잎갈나무 낙엽의 추출성분 및 항산화활성)

  • Si, Chuan-Ling;Kwon, Dong-Joo;Kim, Jin-Kyu;Hwang, Byung-Ho;Bae, Young-Soo
    • Journal of Forest and Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.24-33
    • /
    • 2005
  • Fallen needles (8.5kg) of Larix kaempferi were separately collected, extracted with 95% EtOH. EtOH extract was evaporated under reduced pressure, concentrated then successively fractionated with a series of hexane, methylene chloride, ethylacetate and water on a separatory funnel. Then, each fraction was freeze dried. A portion of ethylacetate and water soluble powder were packed on a column chromatography (Sephadex LH-20) eluting with aqueous MeOH and EtOH-hexane mixture. Spectrometric analyses such as NMR and FAB-MS including TLC were performed to characterize the structures of isolated compounds. 5 compounds were isolated from the fallen needles of Larix kaempferi. The antioxidative activities of each fraction and isolated compounds were done by DPPH radical scavenging test.

  • PDF

Inhibition of Angiotensin II-Induced Vascular Smooth Muscle Cell Hypertrophy by Different Catechins

  • Zheng, Ying;Song, Hye-Jin;Yun, Seok-Hee;Chae, Yeon-Jeong;Jia, Hao;Kim, Chan-Hyung;Ha, Tae-Sun;Sachinidis, Agapios;Ahn, Hee-Yul;Davidge, Sandra T.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2005
  • A cumulative evidence indicates that consumption of tea catechin, flavan-3-ol derived from green tea leaves, lowers the risk of cardiovascular diseases. However, a precise mechanism for this cardiovascular action has not yet been fully understood. In the present study, we investigated the effects of different green tea catechins, such as epigallocatechin-3 gallate (EGCG), epigallocatechin (EGC), epicatechin-3 gallate (ECG), and epicatechin (EC), on angiotensin II (Ang II)-induced hypertrophy in primary cultured rat aortic vascular smooth muscle cell (VSMC). [$^3H$]-leucine incorporation was used to assess VSMC hypertrophy, protein kinase assay, and western blot analysis were used to assess mitogen-activated protein kinase (MAPK) activity, and RT-PCR was used to assess c-jun or c-fos transcription. Ang II increased [$^3H$]-leucine incorporation into VSMC. However, EGCG and ECG, but not EGC or EC, inhibited [$^3H$]-leucine incorporation increased by Ang II. Ang II increased phosphorylation of c-Jun, extracellular-signal regulated kinase (ERK) 1/2 and p38 MAPK in VSMC, however, EGCG and ECG , but not EGC or EC, attenuated c-Jun phosphorylation increased by Ang II. ERK 1/2 and p38 MAPK phosphorylation induced by Ang II were not affected by any catechins. Ang II increased c-jun and c-fos mRNA expression in VSMC, however, EGCG inhibited c-jun but not c-fos mRNA expression induced by Ang II. ECG, EGC and EC did not affect c-jun or c-fos mRNA expression induced by Ang II. Our findings indicate that the galloyl group in the position 3 of the catechin structure of EGCG or ECG is essential for inhibiting VSMC hypertrophy induced by Ang II via the specific inhibition of JNK signaling pathway, which may explain the beneficial effects of green tea catechin on the pathogenesis of cardiovascular diseases observed in several epidemiological studies.

Interaction with Polyphenols and Antibiotics (폴리페놀 화합물과 항생제의 상호작용)

  • Cho, Ji Jong;Kim, Hye Soo;Kim, Chul Hwan;Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.476-481
    • /
    • 2017
  • Polyphenols are secondary metabolites produced by higher plants and have been used as antiallergic, anticancer, antihypertensive, antiinflammatory, antimicrobial and antioxidant agents. They are generally divided into flavonoids and non-flavonoids. The antimicrobial activity of flavonoids are stronger than that of non-flavonoids. The skeleton structures of flavonoids possessing antimicrobial activity are chalcone, flavan-3-ol (catechin), flavanone, flavone, flavonol and proanthocyanidin. The flavonols are shown antibacterial activity against several gram-positive bacteria (Actinomyces naeslundii, Lactobacillus acidophilus and Staphylococcus aureus) and gram-negative bacteria (Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella melaninogenica and Prevotella oralis). Among of non-flavonoids, caffeic acids, ferulic acids and gallic acids showed antimicrobial activity against gram-positive (Listeria monocytogenes and S. aureus) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). These are found to be more efficient against the E. coli, L. monocytogenes, P. aeruginosa and S. aureus than antibiotics such as gentamicin and streptomycin. The kaempferol and quercetin showed synergistic effect with ciprofloxacin and rifampicin against S. aureus and methicillin resistant S. aureus (MRSA). Epigallocatechin gallate (EGCG) acts synergistically with various ${\beta}-lactam$ antibiotics against MRSA. In particular, the epicatechin, epigallocatechin (EGC), EGCG and gallocatechin gallate from Korean green tea has antibacterial activity against MRSA clinical isolates and the combination of tea polyphenols and oxacillin was synergistic for all the clinical MRSA isolates.