• Title/Summary/Keyword: flattened coefficient

Search Result 6, Processing Time 0.02 seconds

Design of nonlinear photonic crystal fibers with ultra-flattened zero dispersion for supercontinuum generation

  • Kumar, Pranaw;Fiaboe, Kokou Firmin;Roy, Jibendu Sekhar
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.282-291
    • /
    • 2020
  • The study reports on the design and performance of two air-filled and two partial ethanol-filled photonic crystal fiber (PCF) structures with a tetra core for supercontinuum generation. The PCFs are nonlinear with ultra-flattened zero dispersion. Holes with smaller areas are used to create a tetra-core PCF structure. Ethanol is filled in the holes of smaller area while the larger holes of cladding region are airfilled. Optical properties including dispersion, effective mode area, confinement loss, normalized frequency, and nonlinear coefficient of the designed PCF structures are investigated via full vector finite difference time domain (FDTD) method. A PCF structure with lead silicate as wafer exhibits significantly better results than a PCF structure with silica as wafer. However, both structures report dispersion at a telecommunication wavelength corresponding to 1.55 ㎛. Furthermore, the PCF structure with lead silicate as wafer exhibits a very high nonlinear coefficient corresponding to 1375 W-1 km-1 at the same wavelength. This scheme can be used for optical communication systems and in optical devices by exploiting the principle of nonlinearity.

An Area Optimization Method for Digital Filter Design

  • Yoon, Sang-Hun;Chong, Jong-Wha;Lin, Chi-Ho
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.545-554
    • /
    • 2004
  • In this paper, we propose an efficient design method for area optimization in a digital filter. The conventional methods to reduce the number of adders in a filter have the problem of a long critical path delay caused by the deep logic depth of the filter due to adder sharing. Furthermore, there is such a disadvantage that they use the transposed direct form (TDF) filter which needs more registers than those of the direct form (DF) filter. In this paper, we present a hybrid structure of a TDF and DF based on the flattened coefficients method so that it can reduce the number of flip-flops and full-adders without additional critical path delay. We also propose a resource sharing method and sharing-pattern searching algorithm to reduce the number of adders without deepening the logic depth. Simulation results show that the proposed structure can save the number of adders and registers by 22 and 26%, respectively, compared to the best one used in the past.

  • PDF

Condensation Heat Transfer and Pressure Drop in Flat Tubes with Different Aspect Ratios (종횡비가 다른 납작관 내 응축열전달 및 압력손실)

  • Kim, Nae-Hyun;Park, Ji-Hoon;Cha, Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1111-1119
    • /
    • 2010
  • In this study, condensation heat transfer coefficients of R-410A were obtained in flattened tubes made from round tubes with an inner diameter of 5.0 mm. The saturation temperature was $45^{\circ}C$; the heat flux, 10 kW/$m^2K$; the mass flux, 100-400 kg/$m^2s$; and the quality, 0.2-0.8. The results showed that the effect of the aspect ratio on the condensation heat transfer coefficient depended on the flow pattern. For annular flow, the heat transfer coefficient increased as the aspect ratio increased. For stratified flow, however, the reverse was true: the pressure drop increased as the aspect ratio increased. Existing correlations adequately predicted the heat transfer coefficients and pressure drops of the flattened tubes.

Effect of Aspect Ratio of Flat Tube on R410A Evaporation Heat Transfer and Pressure Drop (납작관의 종횡비가 R-410A 증발열전달 및 압력손실에 미치는 영향)

  • Kim, Nae Hyun;Lee, Eul Jong;Byun, Ho Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.395-404
    • /
    • 2013
  • In this study, R-410A evaporation heat transfer tests were conducted in flattened tubes made from 5-mm round tubes. The test range covered a saturation temperature of $15^{\circ}C$, heat flux of $5{\sim}15kW/m^2K$, and mass flux of $200-400kg/m^2s$. The results showed that both the condensation heat transfer coefficient and the pressure drop increased as the aspect ratio increased, with a pronounced increase for an aspect ratio of 4. A comparison of the flattened tube data with existing correlations revealed that the heat transfer coefficients were reasonably predicted by the Shah correlation, and the pressure drops were reasonably predicted by the Jung and Radermacher correlation.

Spatiotemporal characteristics of atrial $Ca^{2+}$ sparks: evidence from two-dimensional rapid confocal imaging

  • Woo, Sun-Hee;Lars Cleemann;Martin Morad
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.25-25
    • /
    • 2003
  • Atrial myocytes have two functionally separate $Ca^{2+}$ release sites: those in peripheral sarcoplasmic reticulum (SR) adjacent to the $Ca^{2+}$ channels of surface membrane and those in central SR not associated with $Ca^{2+}$ channels. Study on the spatio-temporal properties of focal $Ca^{2+}$ releases (“sparks”) occurring spontaneously in central and peripheral sites of voltage-clamped rat atrial myocytes, using rapid two-dimensional (2-D) confocal $Ca^{2+}$ imaging revealed that peripheral and central sparks were similar in size and release time (~300,000 $Ca^{2+}$ ions for=12 ms), but significantly larger and longer than ventricular sparks. Both sites were resistant to Cd$^{2+}$ and inhibited by ryanodine. Peripheral sparks were brighter and flattened against surface membrane, had ~5-fold higher frequency, ~2 times faster diffusion coefficient, and dissipated abruptly. Central sparks, in contrast, occurred less frequently, were elongated along the cellular longitudinal axis, and dissipated slowly. Compound sparks (composed of 2-5 unitary focal releases) aligned longitudinally, occurred more frequently at the center.at the center.

  • PDF

Comparison of the Rate of Demineralization of Enamel using Synthetic Polymer Gel (합성 폴리머 겔의 법랑질 탈회 속도 비교)

  • Lee, June-Hang;Shin, Jisun;Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.190-199
    • /
    • 2019
  • $Carbopol^{(R)}$ 907 used as surface protecting agent in White's method is the one of the artificial caries lesion producing solution was discontinuing of production. New surface protecting material to substitute of $Carbopol^{(R)}$ 907 was required. The author prepared an artificial caries lesion producing solution as follows White's method with $Carbopol^{(R)}$ 907 and also another artificial caries lesion producing solution with $Carbopol^{(R)}$ $2050^{(R)}$. 96 flattened and polished enamel samples were immersed in a demineralizing solution of 0.1 mol/L lactic acid, 0.2% carboxyvinylpolymer and 50% saturated hydroxyapatite for 1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 18 and 20 days. All samples from each group were subjected to polarized microscopy observed and image analysis for measuring the lesion depth. From the review of polarized images, the artificial caries lesion producing solution using $Carbopol^{(R)}$ 907 and $Carbopol^{(R)}$ 2050 can produced an artificial caries that was very similar to natural caries characters. From the regression analysis of the lesion depth produced by the artificial caries lesion producing solution using $Carbopol^{(R)}$ 907 and $Carbopol^{(R)}$ 2050, $Carbopol^{(R)}$ 2050 estimate as Y = 9.8X + 8.0 and $Carbopol^{(R)}$ 907 was Y = 8.4X - 0.4. R square value of $Carbopol^{(R)}$ 2050 and $Carbopol^{(R)}$ 907 was 0.965 and 0.945 respectively. The rate of demineralization by the artificial caries lesion producing solution using $Carbopol^{(R)}$ 2050 was faster than that of $Carbopol^{(R)}$ 907. And R square value of $Carbopol^{(R)}$ 2050 and $Carbopol^{(R)}$ 907 were very high and it means that the lesion depth was very high coefficient to demineralization period.