• Title/Summary/Keyword: flat panel displays

Search Result 185, Processing Time 0.024 seconds

A Integrated Circuit Design of DC-DC Converter for Flat Panel Display (플랫 판넬표시장치용 DC-DC 컨버터 집적회로의 설계)

  • Lee, Jun-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.231-238
    • /
    • 2013
  • This paper describes a DC-DC converter IC for Flat Panel Displays. In case of operate LCD devices various type of DC supply voltage is needed. This device can convert DC voltage from 6~14[V] single supply to -5[V], 15[V], 23[V], and 3.3[V] DC supplies. In order to meet current and voltage specification considered different type of DC-DC converter circuits. In this work a negative charge pump DC-DC converter(-5V), a positive charge pump DC-DC converter(15V), a switching Type Boost DC-DC converter(23V) and a buck DC-DC converter(3.3V). And a oscillator, a thermal shut down circuit, level shift circuits, a bandgap reference circuits are designed. This device has been designed in a 0.35[${\mu}m$] triple-well, double poly, double metal 30[V] CMOS process. The designed circuit is simulated and this one chip product could be applicable for flat panel displays.

Fabrication of Hydrogenated Amorphous Silicon Thin-Film Transistors for Flat Panel Display (평판 표시기를 위한 수소화된 비정질실리콘 박막트랜지스터의 제작)

  • Kim, Nam Deog;Kim, Choong Ki;Choi, Kwang Soo;Jang, Jin;Lee, Choo Chon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.453-458
    • /
    • 1987
  • Amorphous silicon thin-film transtors (TFT's) have been designed and fabricated on glass substrates. The hydrogenated amorphous silicon (a-Si:H) thin-film has been deposited by decomposing silane(SiH4) in hydorgen ambient by rf glow discharge method. Amorphous silicon nitride(a-Si:H) has been chosen as the gate dielectric material. It has been prepared by decomposing the mixed gas of silane(SiH4) and ammonia(NH3). The electrical properties and performance characteristics of the thin-film transistrs have been measured and compared with the requirements for the switching elements in liquid crystal flat panel display. The results show that liquid crystal flat panel displays can be fabricated using the thin-film transistors described in this paper.

  • PDF

The study on the electrical and optical characteristics of a new structure for color ac plasma displays (새로운 전극구조를 가진 ac-PDP의 전기 광학적 특성에 관한 연구 (I))

  • Lee, Woo-Geun;Shin, Joong-Hong;Kim, Joon-Ho;Kim, Doo-Han;Cho, Jung-Soo;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2227-2229
    • /
    • 1999
  • As a direct-view flat panel displays, there are many devices, such as plasma display panels(PDPs), vacuum fluorescent displays (VFDs), and light emitting diode(LED). Among these, a PDP is the first type of panel display to be made commercially available. A 'Plasma display' is the general term for a flat display utilizing the light emission that is produced by gas discharge. However, the brightness and Luminous efficiency are still not adequate for consumer television. So, the new sustain electrode type of ac PDP was proposed. By arranging the transparent electrode of quadrangle by zigzag, the area of electrode are reduced, and the length of electrode gap is increased. It generates a high luminous efficiency(corresponding to a 40% improvement of standard type), the same discharge voltage characteristics, and the low power consumption at same luminance.

  • PDF

Development of Air-floating Conveyor System for FPD (FPD용 공기부상 이송컨베이어 시스템 개발)

  • Lho, Tae-Jung;Lee, Wook-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • The CRT(Cathode Ray Tube) displays have been substituted for FPDs(Flat Panel Displays) such as LCD(Liquid Crystal Display) and PDP(Plasma Display Panel) because they have a convex surface, large volume and heavy weight. The productivity of FPDs is greatly dependent on the area of thin glass panel with $0.6{\sim}0.8mm$ thickness because FPDs are manufactured by cutting a large-scaled thin glass panel with patterns to the required product dimensions. So FPD's industries are trying to increase the area of thin glass Panel. Through FEM(Finite Element Method) analysis and fluid analysis, we developed an non-contact and air-floating conveyor system which consists of transport-module, distributor, horizontal/vertical changer and controller for the 7th generation glass panel (2,200mm in width, 1,870mm in length and 0.7mm in thickness). The design technology developed in this study can be effectively applied to a conveyor system for a larger-scaled thin glass panel.

Trend of System on Panel

  • Matsueda, Yojiro;Park, Yong-Sung;Choi, Sang-Moo;Chung, Ho-Kyoon
    • Information Display
    • /
    • v.6 no.5
    • /
    • pp.4-9
    • /
    • 2005
  • There has been a new trend to integrate various kinds of circuits by low temperature polycrystalline silicon thin film transistor (LTPS TFT) on insulator substrates to achieve System on Panel (SOP) for flat panel displays. In this paper, we will review the trend of the SOP and discuss the utility and future possibility of the SOP.

Trend of System on Panel

  • Matsueda, Yojiro;Park, Yong-Sung;Choi, Sang-Moo;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.841-844
    • /
    • 2005
  • There has been a new trend to integrate various kinds of circuits by low temperature polycrystalline silicon thin film transistor (LTPS TFT) on insulator substrates to achieve System on Panel (SOP) for flat panel displays. In this paper, we will review the trend of the SOP and discuss the utility and future possibility of the SOP.

  • PDF

A Touch-sensitive Display with Embedded Hydrogenated Amorphous-silicon Photodetector Arrays (비정질 실리콘 광센서를 이용한 터치 감응 디스플레이 설계 및 제작)

  • Lee, Soo-Yeon;Park, Hyun-Sang;Han, Min-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2219-2222
    • /
    • 2009
  • A new touch-sensitive hydrogenated amorphous silicon(a-Si:H) display with embedded optical sensor arrays is presented. The touch-sensitive panel operation was successfully demonstrated on a prototype of 16-in. active-matrix liquid crystal display (AMLCD). The proposed system provides the finger touched point without the real-time image processing of information of the captured images. Due to the simple architecture of the system, we expect the introduction of large-area touch-sensitive display panels.

The Next Wave in Display Innovation

  • Webster, Steven C.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.4-4
    • /
    • 2008
  • The progress in flat panel displays over the last two decades has been astonishing. In just 20 years, the LCD-TV grew up from a 2-inch curiosity, to an industry that will sell about 120 million flat panel TV's this year, with viewing area up to 4000 times larger. That success is based on continuous innovation, especially in manufacturing processes. For the next decade to bring another doubling of the business, progress will need to continue in four major areas: Human factors, ecological impact, visual quality, and of course continued drive towards affordability. This talk will detail the technology advances that can allow this industry to meet those challenges. Human factors. Today, we adapt our lifestyle to our technology. People organize their offices, and their homes, around displays. We pass around mobile phones to share images, rather than experiencing them as a group. Billions of newspapers continue to be sold daily. Advances in flexible displays can lead to large portable displays. "New era projection" includes the handheld Pico Projectors that are already on the market, and will ultimately appear integrated in mobile phones the same way cameras do today. "Eco" impact. Today TV's are one of the top energy consumers in a U.S. home, and the fastest growing. Watching a large flat panel TV can cost twice as much as running a large refrigerator. With today's concern about energy consumption, regulations are starting to emerge worldwide to limit TV electrical use. Fortunately, good solutions exist in using light management films to eliminate bulbs, saving power without increasing cost. Going forward, LED backlights will drive another step downward. OLED displays might be the ultimate solution. Visual quality. The color of an LCD-TV is still often considered inferior to a far less expensive CRT. And almost all displays suffer from representing a three-dimensional world on a two dimensional surface. The technology to improve color is available today, and will likely move from premium sets into the mainstream as costs come down. 3D is now arriving in movie theaters worldwide, and that will drive up the demand for similar realistic images in home theaters. And the technology is emerging today for 3D representation to move beyond specialized applications into everyday use, on screens large and small. Affordability. The world takes cost-down miracles for granted in consumer electronics. Each of these other advances will be balanced with a drive for affordability, especially as the market grows in emerging countries. The other three challenges must be met without increasing cost. Putting this all together, the next few years will emphasize "eco friendly" designs, and enhanced images such as 3D. By 2013 we will start to see serious penetration by emissive technologies (OLED, high efficiency plasma, or other), with the "ultimate display" likely not in the market for a decade. Lots of opportunities for innovation remain ahead of us.

  • PDF

Thin-Film Photosensors for OLED Flat-Panel Displays

  • Cok, Ronald S.;Nishikawa, Ryuji;Ogawa, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.277-280
    • /
    • 2004
  • Thin-film photosensors on organic light emitting diode (OLED) glass substrates using active-matrix OLED TFT manufacturing processes have been constructed and optimized, and their performance has been characterized. Suitable control circuitry and applications are proposed. The photosensors may be integrated into OLED displays for detection of ambient illumination and for detection of OLED light emission, thereby enabling output, uniformity, and aging compensation.

  • PDF

Investigations into mechanical durability of thin display coatings

  • Currie, Edwin;Thies, Jens;Meijers, Guido;Chawla, Chander
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.981-984
    • /
    • 2005
  • Many flat panel displays displays rely on polymeric substrates with thin film coatings, such as anti-reflective, anti-static and hardcoats, to improve optical and mechanical properties of the display. In this paper we briefly discuss the principles underlying the mechanical robustness of such coated structures, and examine two fitness-for-use tests currently employed by the industry. We compare the teachings with some results obtained with our hardcoats and anti-reflective coatings.

  • PDF