• Title/Summary/Keyword: flash storage

Search Result 349, Processing Time 0.027 seconds

Redundant Storage Device in Communication System (교환 시스템에서의 이중화 저장장치)

  • 노승환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4B
    • /
    • pp.403-410
    • /
    • 2004
  • In general communication system is composed of processor subsystems, I/O processor subsystems and data storage device subsystems those are classified as their functions. In order to improve the data reliability, all subsystems are redundant. Storage device keeps the operational information such as system related information and charging information, and such informations must be stored in non-volatile memory. Flash memory and battery backup memory are commonly used as the non-volatile storage devices. But such kind of memories are expensive per unit capacity and data can't be restored when lost while not being backed up. In this paper we develop a redundant storage device to store a lot of data safely and reliably in communication system. The device consists of micro-controller, FPGA and hard disk It provides many functions those are rebuilding, automatic remapping, host service and remote host service. Also it is designed to provide host service while rebuilding is being done in order not to interrupt the communication services. The developed device can be used instead of expensive storage device like flash memory in various communication systems.

Performance Analysis of Flash Memory SSD with Non-volatile Cache for Log Storage (비휘발성 캐시를 사용하는 플래시 메모리 SSD의 데이터베이스 로깅 성능 분석)

  • Hong, Dae-Yong;Oh, Gi-Hwan;Kang, Woon-Hak;Lee, Sang-Won
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.107-113
    • /
    • 2015
  • In a database system, updates on pages that are made by a transaction should be stored in a secondary storage before the commit is complete. Generic secondary storages have volatile DRAM caches to hide long latency for non-volatile media. However, as logs that are only written to the volatile DRAM cache don't ensure durability, logging latency cannot be hidden. Recently, a flash SSD with capacitor-backed DRAM cache was developed to overcome the shortcoming. Storage devices, like those with a non-volatile cache, will increase transaction throughput because transactions can commit as soon as the logs reach the cache. In this paper, we analyzed performance in terms of transaction throughput when the SSD with capacitor-backed DRAM cache was used as log storage. The transaction throughput can be improved over three times, by committing right after storing the logs to the DRAM cache, rather than to a secondary storage device. Also, we showed that it could acquire over 73% of the ideal logging performance with proper tuning.

A Design of Temperature Management System for Preventing High Temperature Failures on Mobility Dedicated Storage (모빌리티 전용 저장장치의 고온 고장 방지를 위한 온도 관리 시스템 설계)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2024
  • With the rapid growth of mobility technology, the industrial sector is demanding storage devices that can reliably process data from various equipment and sensors in vehicles. NAND flash memory is being utilized as a storage device in mobility environments because it has the advantages of low power and fast data processing speed as well as strong external shock resistance. However, flash memory is characterized by data corruption due to long-term exposure to high temperatures. Therefore, a dedicated system for temperature management is required in mobility environments where high temperature exposure due to weather or external heat sources such as solar radiation is frequent. This paper designs a dedicated temperature management system for managing storage device temperature in a mobility environment. The designed temperature management system is a hybrid of traditional air cooling and water cooling technologies. The cooling method is designed to operate adaptively according to the temperature of the storage device, and it is designed not to operate when the temperature step is low to improve energy efficiency. Finally, experiments were conducted to analyze the temperature difference between each cooling method and different heat dissipation materials, proving that the temperature management policy is effective in maintaining performance.

Design and Implementation of Host-side Cache Migration Engine for High Performance Storage in A Virtualization Environment (가상화 환경에서 스토리지 성능 향상을 위한 호스트 캐시 마이그레이션 엔진 설계 및 구현)

  • Park, Joon Young;Park, Hyunchan;Yoo, Chuck
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.6
    • /
    • pp.278-283
    • /
    • 2016
  • Due to explosive increase in the amount of data produced recently, cloud storage system is required to offer high and stable performance. However, VM (Virtual Machine) migration may result in lowered storage service performance. Especially, in an environment where the host-side flash cache is used in a cloud system, the existing warmed up cache is lost and the problematic cold start begins at a new cache due to a VM migration. In this paper, we first demonstrate and analyze the cold start problem and then propose Cachemior (Cache migrator) which enables efficient hot start of the flash cache.

Index Management Method using Page Mapping Log in B+-Tree based on NAND Flash Memory (NAND 플래시 메모리 기반 B+ 트리에서 페이지 매핑 로그를 이용한 색인 관리 기법)

  • Kim, Seon Hwan;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.1-12
    • /
    • 2015
  • NAND flash memory has being used for storage systems widely, because it has good features which are low-price, low-power and fast access speed. However, NAND flash memory has an in-place update problem, and therefore it needs FTL(flash translation layer) to run for applications based on hard disk storage. The FTL includes complex functions, such as address mapping, garbage collection, wear leveling and so on. Futhermore, implementation of the FTL on low-power embedded systems is difficult due to its memory requirements and operation overhead. Accordingly, many index data structures for NAND flash memory have being studied for the embedded systems. Overall performances of the index data structures are enhanced by a decreasing of page write counts, whereas it has increased page read counts, as a side effect. Therefore, we propose an index management method using a page mapping log table in $B^+$-Tree based on NAND flash memory to decrease page write counts and not to increase page read counts. The page mapping log table registers page address information of changed index node and then it is exploited when retrieving records. In our experiment, the proposed method reduces the page read counts about 61% at maximum and the page write counts about 31% at maximum, compared to the related studies of index data structures.

Page Replacement for Write References in NAND Flash Based Virtual Memory Systems

  • Lee, Hyejeong;Bahn, Hyokyung;Shin, Kang G.
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.3
    • /
    • pp.157-172
    • /
    • 2014
  • Contemporary embedded systems often use NAND flash memory instead of hard disks as their swap space of virtual memory. Since the read/write characteristics of NAND flash memory are very different from those of hard disks, an efficient page replacement algorithm is needed for this environment. Our analysis shows that temporal locality is dominant in virtual memory references but that is not the case for write references, when the read and write references are monitored separately. Based on this observation, we present a new page replacement algorithm that uses different strategies for read and write operations in predicting the re-reference likelihood of pages. For read operations, only temporal locality is used; but for write operations, both write frequency and temporal locality are used. The algorithm logically partitions the memory space into read and write areas to keep track of their reference patterns precisely, and then dynamically adjusts their size based on their reference patterns and I/O costs. Without requiring any external parameter to tune, the proposed algorithm outperforms CLOCK, CAR, and CFLRU by 20%-66%. It also supports optimized implementations for virtual memory systems.

Design Deduplication User File System for Flash-SSD (Flash-SSD 데이터 중복 제거를 위한 사용자 파일 시스템 설계)

  • Myeong, Jae-hui;Kwon, Oh-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.322-325
    • /
    • 2017
  • Due to the rapid increase in data, various studies are being conducted to efficiently manage the data. In 2025, the total amount of data will increase to more than 163 ZB, and more than a quarter of the data will be a real-time data. As mass storage devices is changed from HDD to SSD, SSD needs own way to manage their data effectively. In this paper, we study the SSD system structure and deduplication management methods of data management related to Flash-SSD. We also propose an application level user file system using deduplication. It is anticipated that it saves storage capacity and minimize reducing performance by unnecessary traffic.

  • PDF

Designing Hybrid HDD using SLC/MLC combined Flash Memory (SLC/MLC 혼합 플래시 메모리를 이용한 하이브리드 하드디스크 설계)

  • Hong, Seong-Cheol;Shin, Dong-Kun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.7
    • /
    • pp.789-793
    • /
    • 2010
  • Recently, flash memory-based non-volatile cache (NVC) is emerging as an effective solution to enhance both I/O performance and energy consumption of storage systems. To get significant performance and energy gains by NVC, it would be better to use multi-level-cell (MLC) flash memories since it can provide a large capacity of NVC with low cost. However, the number of available program/erase cycles of MLC flash memory is smaller than that of single-level-cell (SLC) flash memory limiting the lifespan of NVC. To overcome such a limitation, SLC/MLC combined flash memory is a promising solution for NVC. In this paper, we propose an effective management scheme for heterogeneous SLC and MLC regions of the combined flash memory.

A Study on Flash Memory Management Techniques (플래시메모리의 관리 기법 연구)

  • Kim, Jeong-Joon;Chung, Sung-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.143-148
    • /
    • 2017
  • Flash Memory which is light and strong external shock as storage of small electronics like smartphone, digital camera, car black box has been widely used. Since the operation speed of the read operation and the write operation are different from each other, and the flash memory has the feature that it is not possible to overwrite, the delete operation is added to solve these problems. Wear-leveling must also be considered, since the number of erase times of the flash memory is limited. Many studies have been conducted on the substitutional algorithms of flash memory based on these characteristics of recent flash memories. So, to solve the problem that has existing buffer replacement algorithm this thesis divide page into 6 groups and when proposed algorithm select victim page, it consider reference page frequency and page recency.

Energy and Performance-Efficient Dynamic Load Distribution for Mobile Heterogeneous Storage Devices (에너지 및 성능 효율적인 이종 모바일 저장 장치용 동적 부하 분산)

  • Kim, Young-Jin;Kim, Ji-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.9-17
    • /
    • 2009
  • In this paper, we propose a dynamic load distribution technique at the operating system level in mobile storage systems with a heterogeneous storage pair of a small form-factor and disk and a flash memory, which aims at saving energy consumption as well as enhancing I/O performance. Our proposed technique takes a combinatory approach of file placement and buffer cache management techniques to find how the load can be distributed in an energy and performance-aware way for a heterogeneous mobile storage air of a hard disk and a flash memory. We demonstrate that the proposed technique provides better experimental results with heterogeneous mobile storage devices compared with the existing techniques through extensive simulations.