• Title/Summary/Keyword: flares

Search Result 180, Processing Time 0.022 seconds

Simultaneous EUV and Radio Observations of Bidirectional Plasmoids Ejection During Magnetic Reconnection

  • Kumar, Pankaj;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.89.1-89.1
    • /
    • 2013
  • We present a multiwavelength study of the X-class flare, which occurred in active region (AR) NOAA 11339 on 3 November 2011. The EUV images recorded by SDO/AIA show the activation of a remote filament (located north of the AR) with footpoint brightenings about 50 min prior to the flare occurrence. The kinked filament rises-up slowly and after reaching a projected height of ~49 Mm, it bends and falls freely near the AR, where the X-class flare was triggered. Dynamic radio spectrum from the Green Bank Solar Radio Burst Spectrometer (GBSRBS) shows simultaneous detection of both positive and negative drifting pulsating structures (DPSs) in the decimetric radio frequencies (500-1200 MHz) during the impulsive phase of the flare. The global negative DPSs in solar flares are generally interpreted as a signature of electron acceleration related to the upward moving plasmoids in the solar corona. The EUV images from AIA $94{\AA}$ reveal the ejection of multiple plasmoids, which move simultaneously upward and downward in the corona during the magnetic reconnection. The estimated speeds of the upward and downward moving plasmoids are ~152-362 and ~83-254 km/s, respectively. These observations strongly support the recent numerical simulations of the formation and interaction of multiple plasmoids due to tearing of the current-sheet structure. On the basis of our analysis, we suggest that the simultaneous detection of both the negative and positive DPSs is most likely generated by the interaction/coalescence of the multiple plasmoids moving upward and downward along the current-sheet structure during the magnetic reconnection process. Moreover, the differential emission measure (DEM) analysis of the active region reveals presence of a hot flux-rope structure (visible in AIA 131 and $94{\AA}$) prior to the flare initiation and ejection of the multi-temperature plasmoids during the flare impulsive phase.

  • PDF

A Study on Expressivity of Virtual Clothing made of 3D Apparel CAD System according to the Physical Properties of Fabric (3D 어패럴 캐드 시스템으로 제작된 가상의복의 소재물성별 실물 재현도에 관한 연구)

  • Oh, Song-Yun;Ryu, Eun-Joo
    • Fashion & Textile Research Journal
    • /
    • v.17 no.4
    • /
    • pp.613-625
    • /
    • 2015
  • This research was conducted to provide basic data to improve expressivity required for virtual clothing to replace actual clothing. For the experiment, 6 materials were selected and 12(2 kinds of length) actual flared skirts were made. At the same time, simulations were carried out on OptiTex Runway 12.0 for 36(12 kinds of skirts $\times$ KES, FTU, KES weight/10) kinds of virtual flared skirts, which were applied with the measured property values (thickness, weight, bending, shear, friction, and stretch). Also, the study compared and analyzed the wearing images, silhouette overlapping images, and skirt length measurements of the actual and virtual skirts put on a dummy. As a result, the actual skirts showed clear distinction for each material. In contrast, virtual 1 and 2 expressed fabric 3 in the most similar way, but could not recreate the uniform, soft, and natural flare shape of the actual skirts in general. Virtual 3 formed natural flares as those of the actual skirts, and expressed fabric 1, 5, and 6 in a similar way. However, virtual 3 had too much volume and barely showed any distinction for each material. All of virtual 1, 2, and 3 expressed different flare shapes on the front and back sides of the skirt similarly to the actual skirts, and had a good visual expression for the color and texture of the materials. However, they could not effectively express the elasticity and fabric sagging in the bias direction.

A Study on Comparing Evaluation of External Appearance between Real and 3D Simulation of Flared Skirt Focused on Flare Volume and Length

  • Cha, Sujoung
    • Journal of Fashion Business
    • /
    • v.18 no.6
    • /
    • pp.38-56
    • /
    • 2014
  • This study compared the flared skirts on 3D simulation and in real to show diverse forms in women's clothing depending on the body's gait and motion. By finding the problems, we suggested the possible methods for utilizing the 3D simulation in the clothing industry. First, the 3D simulation of flared skirts showed similar forms of appearance according to the flare length and volume. However, virtually formed drape shape was even in size and spacing, whereas it was not even in real. Second, according to the results of appearance test on the length and flare volume at $90^{\circ}$ and $180^{\circ}$, both real and 3D simulation skirts were evaluated to have outstanding appearances regardless of the skirt length. However, as the flares volume increased, the skirts with longer length were evaluated to have superior appearances compared to the skirts of shorter length. Third, it showed higher resemblance between the real and virtual simulation, when the skirt had less flare and as the skirt length shortened. However, it showed greater difference between the real and virtual simulation when flare volume and length increased. The length and volume of the skirt and the physical properties of the material are predicted to be different between the real and virtual simulation. However, they usually are similar in forms, so it is believed possible to use for predicting the design's silhouette or the feel when it is worn. This method can be applied on internet shopping malls, which can possibly reduce unnecessary time and expenses.

The Probability of Solar Proton Events (SPEs) depending on solar and interplanetary type II bursts

  • Youn, Sae-Poom;Moon, Young-Jae;Park, Jin-Hye
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.28.4-29
    • /
    • 2011
  • Solar Proton Events (SPEs, ${\geq}\;10\;cm^{-1}s^{-1}sr^{-1}$ with >10 MeV) are very important for space weather forecasting. It is well known that they are associated with solar flares and/or CME-driven shocks. Especially, the CME-driven shocks have been observed as solar and interplanetary type II bursts. In this study, we estimated the occurrence probability of SPEs depending on three groups: (1) metric, (2) decameter-hectometric (D-H), and (3) meter-to-kilometric (m-to-km) type II bursts. For this work, we used SPEs and all available type II burst data in 1996-2004. The primary findings of this study are as follows. First, the majority (77%) of the m-to-km type II bursts are associated with SPEs and its probability is noticeably higher than D-H type II bursts probability strongly depend on longitude: eastern (0%), center(45%), and western (33%) for X-class associated metric type II bursts, eastern (15%), center (55%), and western (50%) for X-class associated D-H type II bursts, eastern (17%), center (77%), and western (64%) for X-class associated m-to-km type II bursts. Third, for m-to-km type II bursts, the SPE probability increases with CME speed: 400km/s${\leq}$V <1000km/s (36%), 1000km/s ${\leq}$V<1500km/s (40%), 1500km/s${\leq}$V (66%). Finally, we expect that these results will be used for setting up more reasonable solar proton event forecasting models.

  • PDF

EFFECTS OF SOLAR ACTIVITY AND SPACE ENVIRONMENT IN 2003 OCT. (2003년 10월의 태양활동과 우주환경의 영향)

  • Cho, Kyung-Seok;Moon, Yong-Jae;Kim, Yeon-Han;Choi, Sung-Whan;Kim, Rok-Soon;Park, Jong-Uk;Kim, Hae-Dong;Lim, Mu-Taek;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.315-328
    • /
    • 2004
  • In this paper, we present a good example of extreme solar and geomagnetic activities from October to November, 2003. These activities are characterized by very large sunspot groups, X-class solar flares, strong particle events, and huge geomagnetic storms. We discuss ground-based and space-based data in terms of space weather scales. Especially, we present several solar and geomagnetic disturbance data produced in Korea : sunspots, geo-magnetograms, aurora, Ionogram, and Total Electron Content (TEC) map by GPS data. Finally, we introduce some examples of the satellite orbit and communication effects caused by these activities; e.g., the disturbances of the KOMPSAT-1 operational orbit and HF communication.

Literatual study on Atopic dermatitis (아토피 피부염에 관한 문헌적(文獻的) 고찰(考察))

  • Cha, Kwan-Bae;Kim, Yoon-Sik;Seol, In-Chan
    • Journal of Haehwa Medicine
    • /
    • v.14 no.2
    • /
    • pp.113-126
    • /
    • 2005
  • Atopic dermatitis(AD) is a chronic disease that affects the skin. "Atopic" refers to a group of diseases where there is often an inherited tendency to develop other allergic conditions, such as asthma and hay fever. In AD, symptoms vary from person to person. The most common symptoms are dry, itchy skin and rashes on the face, inside the elbows and behind the knees, and on the hands and feet. Although AD may occur at any age, it most often begins in infancy and childhood. The cause of AD is not known, but the disease seems to result from a combination of hereditary and environmental factors along with malfunction of the body's immune system. In contrast to that, the results from literatual study in oriental medicine are as follows; 1. The causes of AD are considered to be Mosusigisadok(母受時氣毒), Waegampoongsubyeol(外感風濕熱), Guasiksinlayeolmul(過食辛辣熱物), Ohbokonje(誤服溫劑). 2. The symptoms are fever, flushed face, red eyes, oliguria, constipation and itching. 3. Chungyeolhaedok(淸熱解毒) would be the basic method of treatment, and it divides into two categories; Subhyung(濕型) and Gunhyung(乾型). In Subhyung(濕型), AD is treated by Josub(燥濕), Chungyeol(淸熱) and Jiyang(止痒) whereas Chungyeol(淸熱), Jiyang(止痒), Jesub(除濕) in Gunhyung(乾型). 4. To prevent further damage and enhance quality of life, it is necessary to keep the temperature and humidity favorable, and healing the skin and keeping it healthy are important. Developing and sticking with a daily skin care routine is critical to preventing flares. Changing the diet and psychological stability may also be helpful to relieve symptoms of AD.

  • PDF

EFFECTS OF SOURCE POSITION ON THE DH-TYPE II CME PROPERTIES

  • Shanmugarju, A.;Moon, Y.J.;Cho, K.S.;Umapathy, S.
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.3
    • /
    • pp.55-60
    • /
    • 2009
  • The properties of SOHO/LASCO CMEs are subjected to projection effects. Their dependence on the source position is important to be studied. Our main aim is to study the dependence of CME properties on helio-longitude and latitude using the CMEs associated with type IIs observed by Wind/WAVES spacecraft (Deca-hecta metric type IIs - DH type IIs). These CMEs were identified as a separate population of geo-effective CMEs. We considered the CMEs associated with the Wind/WAVE type IIs observed during the period January 1997 - December 2005. The source locations of these CMEs were identified using their associated GOES X-ray flares and listed online. Using their locations and the cataloged properties of CMEs, we carried out a study on the dependence of CME properties on source location. We studied the above for three groups of CMEs: (i) all CMEs, (ii) halo and non-halo CMEs, and (iii) limb and non-limb CMEs. Major results from this study can be summarized as follows. (i) There is a clear dependence of speed on both the longitude and latitude; while there is an increasing trend with respect to longitude, it is opposite in the case of latitude. Our investigations show that the longitudinal dependence is caused by the projection effect and the latitudinal effect by the solar cycle effect. (ii) In the case of width, the disc centered events are observed with more width than those occurred at higher longitudes, and this result seems to be the same for latitude. (iii) The dependency of speed is confirmed on the angular distance between the sun-center and source location determined using both the longitude and latitude. (iv) There is no dependency found in the case of acceleration. (v) Among all the three groups of CMEs, the speeds of halo CMEs show more dependency on longitude. The speed of non-halo and non-limb CMEs show more dependency on latitude. The above results may be taken into account in correcting the projection effects of geo-effective CMEs.

AN EVALUATION OF THE SOLAR RADIO BURST LOCATOR (SRBL) AT OVRO

  • HwangBo, J.E.;Bong, Su-Chan;Cho, K.S.;Moon Y.J.;Lee, D.Y.;Park, Y.D.;Gary Dale E.;Dougherty Brian L.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.437-443
    • /
    • 2005
  • The Solar Radio Burst Locator (SRBL) is a spectrometer that can observe solar microwave bursts over a wide band (0.1-18 GHz) as well as detect the burst locations without interferometry or mechanical scanning. Its prototype has been operated at Owens Valley Radio Observatory (OVRO) since 1998. In this study, we have evaluated the capability of the SRBL system in flux and radio burst location measurements. For this, we consider 130 microwave bursts from 2000 to 2002. The SRBL radio fluxes of 53 events were compared with the fluxes from USAF/RSTN and the burst locations of 25 events were compared with the optical flare locations. From this study, we found: (1) there is a relatively good correlation (r = 0.9) between SRBL flux and RSTN flux; (2) the mean location error is about 8.4 arcmin and the location error (4.7 arcmin) of single source events is much smaller than that (14.9 arcmin) of multiple source events; (3) the minimum location error usually occurred just after the starting time of burst, mostly within 10 seconds; (4) there is a possible anti-correlation (r = -0.4) between the pointing error of SRBL antenna and the location error. The anti-correlation becomes more evident (r=-0.9) for 6 strong single source events associated with X-class flares. Our results show that the flux measurement of SRBL is consistent with that of RSTN, and the mean location error of SRBL is estimated to be about 5 arcmin for single source events.

Formations of Coronal Hole Associated with Halo CME

  • Kim, Su-Jin;Lee, Sung-Eun;Marubashi, Katsuhide;Cho, Kyung-Suk;Bong, Su-Chan;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.27.2-27.2
    • /
    • 2010
  • We have studied the formation of coronal holes (CHs) associated with halo CMEs. For this study, we used multi-wavelength data from Yohkoh Soft X-ray Telescope (SXT), GOES Soft X-ray Imager (SXI), SOHO EIT 195 ${\AA}$, SOHO MDI magnetogram, MLSO He I 10830 ${\AA}$, and BBSO H-alpha. The CHs are characterized by open magentic field regions with low emission, density, and temperature and their open fields drive high speed solar winds which cause geomagnetic storms. So far, the formation and the evolution of CHs are not well understood. The formation of the dark region associated with the eruption of a CME is well known as "coronal dimming" which may be caused by the mass depletion near the CME footpoint. It is different from a typical CH since it persists for only one or two days. In this study, we present three cases that show the formation of coronal holes which are associated with three halo CMEs: 1) 2000 Jul 14, 2) 2003 Oct 28, 3) 2005 May 13. In the first case, hot plasma was ejected during a weak eruption and then filled out the pre-existing CH. After the halo CME occurred, the hot plasma region becomes a CH again. In the second and the third cases, we found newly formed CHs just after their associated CMEs. All three coronal holes are associated with strong flares and persist over 3 days until they disappeared by the solar rotation. Examining the MDI magnetograms, we found that the magnetic polarity of each CH region has one polarity. Based on these results, we suggest that the coronal holes can be formed by the CMEs and they should be distinguished from the coronal dimming.

  • PDF

CME and radio characteristics of making large solar proton events

  • Hwang, Jung-A;Cho, Kyung-Suk;Bong, Su-Chan;Kim, Su-Jin;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.33.2-33.2
    • /
    • 2010
  • We have investigated a relationship among the solar proton events (SPEs), coronal mass ejections (CMEs) and solar flares during the solar cycle 23 (1997-2006). Using 63 SPE dataset, we found that SPE rise time, duration time, and decrease times depend on CME speed and SPE peak intensity depends on the CME earthward direction parameter as well as CME speed and x-ray flare intensity. While inspecting the relation between SPE peak intensity and the CME earthward direction parameter, we found that there are two groups: first group consists of large 6 SPEs (> 10,000 pfu at >10 MeV proton channel of GOES satellite) and shows a very good correlation (cc=0.65) between SPE peak intensity and CME earthward direction parameter. The second group has a relatively weak SPE peak intensity and shows poor correlation between SPE peak intensity and the CME earthward direction parameter (cc=0.01). By investigating characteristics of 6 SPEs in the first group, we found that there are special common conditions of the extremely large proton events (group 1); (1) all the SPEs are associated with very fast halo CME (>1400km/s), (2) they are almost located at disk region, (3) they also accompany large flare (>M7), (4) all they are preceded by another wide CMEs, and (5) they all show helmet streamer nearby the main CME. In this presentation, we will give details of the energy spectra of the 6 SPE events from the ERNE/HED aboard the Solar and Heliospheric Observatory (SOHO), and onset time comparison among the SPE, flare, type II burst, and CME.

  • PDF