• Title/Summary/Keyword: flammable atmosphere

Search Result 23, Processing Time 0.017 seconds

Gas Explosion Hazard Analysis in Domestic (가정집에서 가스폭발 위험성 분석)

  • Jo Young-Do;Kim Ji-Yun;Kim Sang-sub
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.36-42
    • /
    • 2001
  • A leak of fuel gas in partially confined area creates a flammable atmosphere and give rise to an explosion, which is one of the most common accident in domestic. Observations from accident in domestic suggest that some explosions are caused by a quantify of fuel significantly less than lower explosion limit(LEL) amount required to fill the room, which is attributed to inhomogeneous mixing of leaked gas. The minimum amount of leaked gas for explosion is highly dependent on the mixing degree in the area. For lighter gas, such as methane, a high concentration tends to build up in the space from ceiling of room. But heavy gas, such as propane, a high concentration tends to build up in the space from bottom of room. This paper presents a method for analysing the explosion hazard in a room with very small amount of leaked gas. Based on explosion limit concentration, the gaussian distribution model is used to estimate the minimum amount of leak which yields a specified explosion pressure. The results demonstrate that catastrophic structural damage can be achieved with a volume of fuel gas which is less than 0.5 percent of the total enclosed volume in domestic. The method will help analyzing hazard to develop new safe device as well as investigating accident.

  • PDF

Explosion Likelihood Investigation of Facility Using CVD Equipment Using SEMI S6 (SEMI S6를 적용한 CVD 설비의 폭발분위기 조성 가능성 분석)

  • Mi Jeong Lee;Dae Won Seo;Seong Hee Lee;Dong Geon Lee;Se Jong Bae;Jong-Bae Baek
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.62-67
    • /
    • 2023
  • Due to the prolonged impact of COVID-19, the demand for Information Technology (IT) products is increasing, and their production facilities are expanded. Consequently, the use of harmful and dangerous chemicals are increased, the risk of fire(s) and explosion(s) is also elevated. In order to mitigate these risks, the government sets standards, such as KS C IEC 60079-10-1, and manages explosion-prone hazardous facilities where flammable substances are manufactured, used, and handled. However, using the standards of KS, it is difficult to predict the actual possibility of an explosion in a facility, because ventilation (an important factor) is not considered when setting up a hazardous work environment. In this study, the SEMI S6, Tracer Gas Test was applied to the chemical vapor deposition (CVD) facility, a major part of the display industry, to evaluate ventilation performance and to confirm the possibility of creating a less explosive environment. Based on the results, it was confirmed that the ventilation performance in the assumed scenarios met the standards stipulated in SEMI S6, along with supporting the possibility of creating a less explosive working condition. Therefore, it is recommended to use the prediction tool using engineering techniques, as well as KS standards, in such hazardous environments to prevent accidents and/or reduce economic burden following accidents.

Development of Accident Response Information Sheets for Hydrogen Fluoride (불화수소에 대한 사고대응 정보시트 개발)

  • Yoon, Young Sam;Park, Yeon Shin;Kim, Ki Joon;Cho, Mun Sik;Hwang, Dong Gun;Yoon, Jun heon;Choi, Kyung Hee
    • Korean Journal of Hazardous Materials
    • /
    • v.2 no.1
    • /
    • pp.18-26
    • /
    • 2014
  • We analyzed the demand of competent authorities requiring adequate technical information for initial investigation of chemical accidents. Reflecting technical reports on chemical accident response by environmental agencies in the U.S. and Canada, we presented information on environmental diffusion and toxic effects available for the first chemical accident response. Hydrogen fluoride may have the risk potential to corrode metals and cause serious burns and eye damages. In case of inhalation or intake, it could have severe health effects. The substance itself is inflammable, but once heated, it decomposes producing corrosive and toxic fume. In case of contact with water, it can produce toxic, corrosive, flammable or explosive gases and its solution, a strong acid, may react fiercely with a base. In case of hydrogen fluoride leak, the preventive measures are to decrease steam generation in exposed sites, prevent the transfer of vapor cloud and promptly respond using inflammable substances including calcium carbonate, sodium bicarbonate, ground limestone, dried soil, dry sand, vermiculite, fly ash and powder cement. The method for fire fighting is to suppress fire with manless hose stanchions or monitor nozzles by wearing the whole body protective clothing equipped with over-pressure self-contained breathing apparatus from distance. In case of transport accident accompanied with fire, evacuation distance is 1,600m radius. In cae of fire, fire suppression needs to be performed using dry chemicals, CO2, water spray, water fog, and alcohol-resistance foam, etc. The major symptoms by exposure route are dyspnoea, bronchitis, chemical pneumonia and pulmonary edema for respiration, skin laceration, dermatitis, burn, frostbite and erythema for eyes, and nausea, diarrhea, stomachache, and tissue destruction for digestive organs. In atmosphere, its persistency is low, and its bioaccumulation in aquatic organism is also low.