• Title/Summary/Keyword: flamelet model

Search Result 116, Processing Time 0.02 seconds

Numerical Modeling for Vaporization, Auto-Ignition and Combustion Processes of Dimethyl Ether (DME) Fuel Sprays (DME 연료의 증발, 점화 및 분무연소특성 해석)

  • Yu, Yong-Wook;Lee, Jeong-Won;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.3
    • /
    • pp.33-39
    • /
    • 2007
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and combustion processes in high-pressure engine conditions. In order to realistically simulate the dimethyl ether (DME) spray dynamics and vaporization characteristics in high-pressure and high-temperature environment, the high-pressure vaporization model is utilized. The interaction between chemistry and turbulence is treated by employing the Representative Interaction Flamelet (RIF) model. The detailed chemistry of 336 elementary steps and 78 chemical species is used for the DME/air reaction. Numerical results indicate that the RIF approach, together with the high-pressure vaporization model, successfully predicts the essential feature of ignition and spray combustion processes.

  • PDF

Numerical Modeling for Auto-Ignition and Combustion Processes of Dimethyl Ether (DME) Fuel Sprays (DME 연료의 점화 및 연소특성 해석)

  • Lee, J.W.;Ryu, L.S.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.16-25
    • /
    • 2005
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and combustion processes in high-pressure engine conditions. In order to realistically simulate the dimethyl ether (DME) spray dynamics and vaporization characteristics in high-pressure and high-temperature environment, the high-pressure vaporization model is utilized. The interaction between chemistry and turbulence is treated by employing the Representative Interaction Flamelet(RIF) model. The detailed chemistry of 336 elementary steps and 78 chemical species is used for the DME/air reaction. Numerical results indicate that the RIF approach, together with the high-pressure vaporization model, successfully predicts the essential feature of ignition and spray combustion processes.

  • PDF

Prediction of Turbulent Premixed Flamefield in Bunsen Burner (Bunsen Buner 난류 예혼합 화염장의 해석)

  • Cho, Ji-Ho;Kim, Hoo-Joong;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.195-199
    • /
    • 2003
  • The stoichiometric methan/air premixed turbulent flames at the axisymmetric Bunsen burner situation are numerically investigated. To account for the chemistry-turbulence interaction in the turbulent premixed flames, the steady laminar flamelet library method has been adopted. The flame front is tracked by using the Level-Set Approach. Turbulence is represented by the ${\kappa}-{\varepsilon}$ modeling with a Pope's correction. The detailed comparison between prediction and measurement has made for the flame field in terms of velocity, turbulent kinetic energy, and normarlized temperature.

  • PDF

Numerical Modeling for Turbulent Partially Premixed Flames (난류 부분 예혼합 화염장에 대한 수치 모델링)

  • Kim, Hoo-Joong;Kim, Yomg-Mo;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.191-194
    • /
    • 2003
  • The present study is focused on the subgrid scale combustion model in context with a Large Eddy Simulation. In order to deal with detailed chemical kinetic, the level-set method based on a flamelet model is addressed. In this model, the flame front is treated as an interface, represented by an iso-surface of a scalar field G. This iso-surface is convected by the velocity field and its filtered quantities are include the turbulent burning velocity, which is to be modelled. For modelling the turbulent burning velocity, an equation for the length-scale of the sub-filter flame front fluctuations was developed. The formulations and issues for the turbulent premixed and partially premixed flames are addressed in detail.

  • PDF

Numerical Studies on Combustion Characteristics of Diesel Engines using DME Fuel (DME연료 디젤 엔진에서의 연소특성 해석)

  • Yu, Yong-Wook;Lee, Jeong-Won;Kim, Yong-Mo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.143-149
    • /
    • 2008
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and spray combustion processes in DI diesel engine using DME and n-heptane. In order to realistically simulate the dimethyl ether (DME) spray dynamics and vaporization characteristics in high-pressure and high-temperature environment, the high-pressure vaporization model has been utilized. The interaction between chemistry and turbulence is treated by employing the Representative Interaction Flamelet (RIF) model. The detailed chemistry of 336 elementary steps and 78 chemical species is used for the DME/air reaction. Based on numerical results, the detailed discussion has been made for the distinctly different combustion characteristics of DME diesel engine in term of vaporization, ignition delay, pollutant formation, and heat release rate.

Numerical Study on the Stabilization of Turbulent Swirling Lifted Premixed Syngas Flames (석탄가스 난류선회유동 예혼합부상화염의 안정성 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.349-352
    • /
    • 2008
  • This study has numerically modeled the combustion processes of the turbulent swirling premixed lifted syngas flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role of stabilizing the turbulent lifted flames. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Numerical results indicate clearly that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling premixed lifted flames in the low-swirl burner. Computations are made for the wide range of the syngas chemical composition and the dilution level at two pressure conditions (1.0, 5.0 bar). Numerical results indicate that the lifted height in the LSB is increased by decreasing the H2 percentage and increasing the dilution level at the given equivalence ratio. It is also found that the flashback is occurred for the hydrogen composition higher than 80% at the equivalence ratio, 0.8. However, at the syngas composition range in the IGCC system, the stable lean-premixed lifted flames are formed at the low-swirl burner.

  • PDF

Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner (저 스월 버너에서의 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.3
    • /
    • pp.8-15
    • /
    • 2007
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model.. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the. structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

Flamelet Modelling of Soot Formation and Oxidation in a Laminar $CH_4-Air$ Diffusion Flame (화염편 모델을 이용한 층류확산화염장의 매연 생성 및 산화과정 해석)

  • Kim Gunhong;Kim Hoojoong;Kim Yongmo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.68-75
    • /
    • 2005
  • By utilizing a semi-empirical soot model, the applicability of the laminar flamelet concept fur simulating the formation and oxidation of soot in the laminar diffusion flame has been studied. The source terms for two transport equations of the soot formation and oxidation are calculated in the mixture fraction/scalar dissipation rate space for laminar flamelets and stored in a library. In this study, emphasis is given to the interaction associated with radiation and soot formation. The radiative heat loss is obtained by solving the radiative transfer equation using the unstructured grid finite volume method with the WSGGM. The calculated temperatures and soot volume fractions agree relatively well with the experimental data and the previous numerical results of Kaplan et al. using the detailed chemistry.

Development of Real-Fluid based Flamelet Modeling for Liquid Rocket Injector (액체로켓분사기 해석을 위한 실제유체 기반의 난류연소모델 개발)

  • Kim, Seong-Ku;Choi, Hwan-Seok;Park, Tae-Seon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.150-155
    • /
    • 2010
  • Liquid rocket injectors play crucial roles on propulsive performance, combustion stability, and heat transfer characteristics. Nevertheless, their developments have mainly relied on empirical methods and expensive hot-firing tests due to lack of fundamental understanding of high pressure combustion phenomena in the near-injector regions. The present study was motivated by recent efforts to develop reliable modeling of liquid rocket combustion. The turbulent combustion model based on the flamelet concept has been extended to take into account real-fluid behaviors occurred at supercritical pressures, and validated against measurements for a cryogenic nitrogen injection, a non-premixed turbulent jet flame at atmospheric pressure, and a LOx/$GH_2$ coaxial shear injector at a supercritical pressure.

  • PDF

Numerical Modeling for Turbulent Combustion Processes of Vortex Hybrid Rocket (Vortex Hybrid 로켓 난류연소과정의 모델링 해석)

  • 조웅호;김후중;김용모;윤명원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.244-245
    • /
    • 2003
  • 고체나 액체 추진로켓에 비하여 하이브리드 추진 시스템은 작동조건의 안정성과 안전함등의 많은 장점을 가지고 있다. HTPB와 같은 고체연료는 제작 및 저장, 운송 그리고 장착상의 안정성을 가지고 있으며 하이브리드 로켓의 고체연료로의 산화제의 유입을 제어하면서 추력의 변화와 엔진내부의 연소중단과 재 점화를 용이하게 할 수 있다. 이러한 이유로 인하여 하이브리드 엔진은 좀 더 경제적인 장치로 기대를 모으고 있다. 그러나, 기존의 하이브리드 로켓 엔진은 고체 추진 로켓에 비하여 낮은 연료 regression 율과 연소효율을 가지는 단점이 있다. 이러한 단점을 해결하고 요구되어지는 추력값과 연료유량을 증가시키기 위하여 고체연료의 표면적을 증가시킬 필요가 있다. 기존의 하이브리드 엔진에서는 연료 그레인에 다수의 연소포트를 만들어 표면적을 증가시켰으나 이는 비 활용 공간의 증가와 추진제의 질량 및 체적분율의 상당한 감소를 초래한다. 지난 수십년간에 걸쳐 하이브리드 엔진에서 연료의 regression 특성 및 엔진 성능 향상을 위한 연구가 계속되어 왔으며 최근에 엔진의 체적 규제를 경감시키고 연료의 regression율을 향상시키기 위하여 선회유동을 이용하는 하이브리드 로켓 엔진들이 제안되고 있다. 이러한 선회유동을 가지는 하이브리드 로켓은 고체연료 그레인에 대하여 평행하게 유입되는 기존의 하이브리드 로켓에 비하여 고체연료 벽면에서의 대류열전달이 현저하게 증가하게 되어 아주 높은 고체연료의 regression율을 얻을 수 있는 이점이 있다. 선회유동 하이브리드 로켓의 연소과정은 고체 연료의 열분해과정, 대류 열전달, 난류 혼합, 난류와 화학반응의 상호작용, soot의 생성 및 산화과정, soot 입자 및 연소가스에 의한 복사 열전달, 연소장과 음향장의 상호작용 등의 복잡한 물리적 과정을 포함하고 있다. 이러한 물리적 과정 중 난류연소, 고체연료 벽면 근방에서의 대류 열전달 및 연소과정에서 생성되는 soot 입자로부터의 복사 열전달, 그리고 고체연료 열 분해시 표면반응들은 고체연료의 regression율에 큰 영향을 미친다. 특히 고체연료의 난류화염면의 위치와 폭, 그리고 비 예혼합 난류화염장에서 생성되는 soot의 체적분율의 예측은 난류연소모델, 열전달 모델, 그리고 regression율 모델에 의해 크게 영향을 받기 때문에 수치모델의 예측 능력 향상시키기 위하여 이러한 물리적 과정을 정확히 모델링해야 할 필요가 있다. 특히 vortex hybrid rocket내의 난류연소과정은 아래와 같은 Laminar Flamelet Model에 의해 모델링 하였다. 상세 화학반응 과정을 고려한 혼합분율 공간에서의 화염편의 화학종 및 에너지 보존 방정식은 다음과 같다. 화염편 방정식과 혼합분률과 scalar dissipation rate의 관계식을 이용하여 혼합분률과 scalar dissipation rate에 따른 모든 reactive scalar들을 구하게 된다. 이러한 화염편 방정식들을 mixture fraction space에서 이산화시켜서 얻은 비선형 대수방정식은 TWOPNT(Grcar, 1992)로 계산돼 flamelet Library에 저장되게 된다. 저장된 laminar flamelet library를 이용하여 난류화염장의 열역학 상태량 평균치는 presumed PDF approach에 의해 구해진다. 본 연구에서는 강한 선회유동을 가지는 Hybrid Rocket 연소장내의 난류와 화학반응의 상호작용을 분석하기 위하여 Laminar Flamelet Model, 화학평형모델, 그리고 Eddy Dissipation Model을 이용한 수치해석결과를 체계적으로 비교하였다. 또한 Laminar Flamelet Model과 state-of-art 물리모델들을 이용하여 선회 유동을 갖는 하이브리드 로켓 엔진의 연소 및 Soot 생성 및 산화과정을 살펴보았으며 복사 열전달이 고체 연료 표면의 regression율에 미치는 영향도 살펴보았다. 특히 swirl강도, 산화제의 유입위치 그리고 선회유동의 형성방식이 하이브리드 로켓의 연소특성 및 regression rate에 미치는 영향을 상세히 해석하였다.

  • PDF