• Title/Summary/Keyword: flame stability

Search Result 395, Processing Time 0.021 seconds

Visualization of Initial Flame Development in an SI Engine (스파크 점화 엔진에서 초기화염 발달의 가시화)

  • Ohm Inyong
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.45-51
    • /
    • 2004
  • Initial flame development and propagation were visualized under different fuel injection timings to relate the initial flame development to the engine stability in a port injection SI engine. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Stratification state was controlled by varying injection timing. Under each injection condition, the flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flame. The flame stability was estimated by the weighted average of flame area, luminosity, and standard deviation of flame area. Results show that stratification state according to injection timing did not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability governs the engine stability and lean misfire limit.

  • PDF

Stability of Attached Flame in $H_2$/CO Syngas Non-premixed Turbulent Jet Flame ($H_2$/CO 합성가스 비예혼합 난류 제트화염에서 부착화염의 화염안정화)

  • Hwang, Jeong-Jae;Bouvet, Nicolas;Sohn, Ki-Tae;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.22-29
    • /
    • 2012
  • The detachment stability characteristics of syngas $H_2$/CO jet attached flames were studied. The flame stability was observed while varying the syngas fuel composition, coaxial nozzle diameter and fuel nozzle rim thickness. The detachment stability limit of the syngas single jet flame was found to decrease with increasing mole fraction of carbon monoxide in the fuel. In hydrogen jet flames with coaxial air, the flame detachment stability was found to be independent of the coaxial nozzle diameter. However, velocities of appearance of liftoff and blowout velocities of lifted flames have dependence. At lower fuel velocity range, the critical coaxial air velocity leading to flame detachment increases with increasing fuel jet velocity, whereas at higher fuel velocity range, it decreases. This increasing-decreasing non-monotonic trend appears for all $H_2$/CO syngas compositions (50/50~100/0% $H_2$/CO). To qualitatively understand the flame behavior near the nozzle rim, $OH^*$ chemiluminescence imaging was performed near the detachment limit conditions. For all fuel compositions, local extinction on the rim is observed at lower fuel velocities(increasing stability region), while local flame extinction downstream of the rim is observed at higher fuel velocities(decreasing stability region). Maximum values of the non-monotonic trends appear to be identical when the fuel jet velocity is normalized by the critical fuel velocity obtained in the single jet cases.

EFFECT OF FUEL STRATIFICATION ON INITIAL FLAME DEVELOPMENT: PART 1-WITHOUT SWIRL

  • Ohm, I.Y.;Park, C.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.519-526
    • /
    • 2006
  • For investigating the effect of fuel stratification on flame propagation, initial flame development and propagation were visualized under different axially stratified states in a port injection SI engine. Stratification was controlled by the combination of the port swirl ratio and injection timing. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Firstly in this paper, the characteristics under no port-generated swirl condition, i.e. normal conventional case was studied. Under various stratified conditions, flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flames propagation. The flame stability was estimated by the weighted average of flame area and luminosity. The stability was also evaluated through the standard deviation of flame area and propagation distance, and mean absolute deviation of propagating direction. Results show that stratification state according to injection timing do not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability is closely related to the engine stability and lean misfire limit.

Experimental Study on the Flame Stable Region of Natural Gases from Various Producing Districts (산지별 천연가스의 화염 안정영역에 관한 실험적 연구)

  • Lee, Chang-Eon;Hong, Sung-Chang;Jeong, Young-Sik;You, Hyun-Seok;Lee, Seung-Jun;Her, Jae-Young;Hwang, Cheol-Hong
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.69-75
    • /
    • 2007
  • In this study, the difference of flame stability zone for natural gases from producing districts was studied experimentally using a new type of flame stability diagram. The similarity of stable flame zone between a domestic appliance and an interchangeability test(IT) burner is also examined. As a result, the stable flame zones expressed by limits curves of flame lifting and yellow tipping show the similar results in a domestic gas range and IT burner. Furthermore, IT burner can reproduce the flash back phenomena and show the distinct difference of fuel type as the burner diameter is increased. To suggest the new type of flame stability diagram in the respect of fuel interchangeability, the air flowrate and Wobbe fuel flowrate were adopted as axis coordinates. It can be identified that the new diagram can provide the useful information on the difference of flame stability zone, heat input rate and air-fuel ratio when a fuel is altered to other fuels under the identical operating conditions. Finally, the stable flame zones for natural gas of 6 type are compared, and the detailed information to use as the interchangeability fuels of standard natural gas is provided using the new type of flame stability diagram.

  • PDF

Stabilization of Lean Premixed Flames by a Heated Cylindrical Rod;The Role of Heat Flux (가열된 원통형보염기에 의한 희박 예혼합화염의 보염;열유속의 역할)

  • Seo, Dong-Kyu;Lee, Won-Nam
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1372-1377
    • /
    • 2003
  • The stabilization of propane/air lean premixed flames by a heated cylindrical rod is investigated experimentally. The flame stability limits, heat flux, surface temperatures, equivalence ratios, and mixture velocities are measured in order to understand the role of heat flux or surface temperature on the flame stabilization of lean premixed flames. The flame stability limits are lowered by a heated cylindrical rod and extended even below the flammability limit of propane/air mixture when sufficient heat flux is provided. The flame stability limit decreases with the increase of heat flux or surface temperature and decreases with the higher mixture velocity. The diameter of cylindrical rod, however, dose not significantly affect the flame stability limit. The laminar flame speed has been measured for ultra lean propane/air premixed flames. The flame stabilization by a heated cylindrical rod provides the useful tool for the measurement of flame speed under very fuel-lean conditions.

  • PDF

An Experimental Study on Flame Stability and Combustion Characteristics of Coaxial Diffusion Flame (동축분류 확산화염에서 화염안정화와 연소특성에 관한 연구)

  • 유현석;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.509-518
    • /
    • 1995
  • A study for the flame stability and the combustion characteristics of coaxial diffusion flame was conducted. The fuel employed was natural gas. The experimental variables were rim thickness of fuel tube, blockage ratio of the outer diameter of fuel tube to the inner diameter of air tube, and momentum ratio of fuel to air. It was consequently found that the stability in the neighborhood of the fuel rim depended on the rim thickness, especially in the case of above 3 mm, and that the stable region of the flame extended remarkably due to the formation of recirculation zone above rim. The effect of the blockage ratio on the flame stability was found to be minor in the case of above 3 mm of rim thickness. Between the momentum ratio 2 and 3, the stable flame zone was widely established as well good combustion. With increasing the fuel-air momentum ratio, axial velocity, turbulence intensity, and Reynolds stress increased.

A study on the stabilization characteristics of the diffusion flame formed behind a bluff body (Bluff Body 후류에 형성되는 확산화염의 보염특성에 관한 연구)

  • ;;An, Jin-Geun;Song, Kyu-Keun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3344-3351
    • /
    • 1995
  • The stability of diffusion flame formed behind a bluff body with fuel injection slits was experimentally investigated in various fuel injection angles, fuel injection ratios, grids and extension ducts. The flame stability limits, temperature distributions and length of recirculation zones, direct photographs of flames were measured in order to discuss the stabilization mechanism of the diffusion flame. The results from this study are as follows. The fuel injection angle is an important factor in determining the flame stability. Stability limits can be improved by variety of the fuel injection ratio. When the grid and extension duct are set, stability characteristics are varied with the blockage ratios, grid intervals, and grid numbers. The recirculation zone not only serves as a steady ignition source of combustion stream but also governs the stabilization mechanism.

A Study on the Flame Configuration and Flame Stability Mechanism with a Nozzle Diameter of Laminar Lifted Jet Flame (층류제트 화염의 노즐직경에 따른 안정화 메커니즘과 화염형상에 관한 연구)

  • Kim, Tae-Kwon;Kim, Kyung-Ho;Ha, Ji-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.204-215
    • /
    • 2011
  • Flame stability is the one of the main mechanism of laminar lifted flame and flame propagation velocity becomes a yardstick to measure the flame stability. Bilge has presented the flame propagation velocity of the triple flame and the flame stability mechanism related the flame configuration and mixture fraction. However, there was not able to observe all process of flame ignition and extinction for small nozzle diameter. In this paper, we have subdivided the flame configuration and stability mechanism and classified the flame behavior with a nozzle diameter. Also we have subdivided the 'triple flame propagation opened' and the 'triple flame propagation closed' from the triple flame propagation of triple flame criterion.

Study on Flame Stability Using a Slot Burner (슬롯버너를 이용한 예혼합화염의 안정성에 관한 연구)

  • Lee, Won-Nam;Seo, Dong-Kyu
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.97-103
    • /
    • 2001
  • The characteristics of flame stability have been studied experimentally using a slot burner. The blowout conditions of a fuel-lean premixed laminar flame, which is located in the middle of fuel-rich premixed laminar flames, are identified for propane, ethylene, and methane flames. The fuel-rich flames could stabilize the fuel-lean flame for the equivalence ratio as low as 0.2. The laminar flame speed along with the heat release rate is likely to be the important factor in stabilizing a fuel-lean flame. The increase of heat release rate on a fuel-rich flame lowers the equivalence ratio limit for the stable fuel-lean flames. The stability of fuel-lean flames, however, was not sensitive to the equivalence ratio of a fuel-rich flame.

  • PDF

Stability of premixed double concentric jets flame with a recirculation zone (재순환역을 수반하는 동축분류예혼합화염에 관한 연구)

  • 이등헌일;송규근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.145-153
    • /
    • 1987
  • Stability limits of a double concentric jets flame and the structure of recirculation zone formed behind a thick burner rim were investigated. To control the flame stability, swirled secondary air flow ranging 0.13-0.71 of swirl number, and air, fuel, and mixture gas injection from an injection coaxial slit set on burner rim were examined. Flame stability limits, flame shapes, lengths of recirculation zone, temperature distributions, residence times, air ratios in the recirculation zone were measured. The following results were obtained. (1) Lean limits were considerably widened by a strong swirl because the recirculation zone was enlarged. (2) At fuel injection as well as mixture injection, lean limits were also extended. But, air injection had no effect on stability limits. (3) Injected gas seems to diffuse into the recirculation zone through its outer boundary surrounded the secondary air. Therefore, chemical structure in the recirculation zone with air injection coincides with that without injection. (4) Injection position had no effect on flame stability limits.