• Title/Summary/Keyword: flame retardant finishing

Search Result 49, Processing Time 0.017 seconds

Experimental Study on the Flash Over Delay Effects according to the Prevention of Flame Spread between Composite Material Panels (복합자재의 패널 간 화염확산방지에 따른 플래시오버 지연 효과에 대한 실험적 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • A sandwich panel is a composite material composed of a double-sided noncombustible material and insulation core which is used in the inner, outer walls, and roof structure of a building. Despite its excellent insulation performance, light weight and excellent constructability, a flame is brought into the inside of the panel through the joint between the panels, melting the core easily and causing casualties and property damage due to the rapid spread of flame. The current Building Law provides that the combustion performance of finishing materials for buildings should be determined using a fire test on a small amount of specimen and only a product that passes the stipulated performance standard should be used. This law also provides that in the case of finishing materials used for the outer walls of buildings, only materials that secured noncombustible or quasi-noncombustible performance should be used or flame spread prevention (FSP) should be installed. The purpose of this study was to confirm the difference between the dangers of horizontal and vertical fire spread by applying FSP, which is applied to finishing materials used for the outer walls of buildings limitedly to a sandwich panel building. Therefore, the combustion behavior and effects on the sandwich panel according to the application of FSP were measured through the construction to block the spread of flame between the panels using a full scale fire according to the test method specified in ISO 13784-1 and a metallic structure. The construction of FSP on the joint between the panels delayed the spread of flame inside the panels and the flash over time was also delayed, indicating that it could become an important factor for securing the fire safety of a building constructed using complex materials.

The Synthesis of Diphenyl ethanolamidophosphate (DPEAP) and the Flame Retardancy of Cotton Fabric (Diphenyl ethanolamidophosphate의 합성과 면섬유에 대한 방염성)

  • Huh, Man Woo;Yoon, Jong Ho;Cho, Yong Suk;Kim, Young Suk;Lim, Hak Sang
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.25-34
    • /
    • 1996
  • Diphenyl ethanolamidophosphate(DPEAD) was synthesized for the purpose of developing a new flame retardant for cotton fabric. As the intermediate material was used diphenyl chlorophosphate(DPCP) and it was synthesized by using phosphorus oxychloride and phenol as the starting materials. The final product DPEAP was obtained by the reaction of DPCP and ethanolamine. The flame retardancy of cotton fabrics treated by DPEAP through pad-dry-cure(PDC) process was examined at various conditions. The physical property change of the DPEAP treated cotton fabrics were investigated by examining the drape stiffness, the wrinkle recovery, and the tensile strength. The results are summarized as follows: (1) DPEAP has shown excellent flame retardancy on cotton fabrics in comparison to other flame retardants for cotton fabrics available commercially. (2) The optimal condition for PDC process found was that the curing temperature was 16$0^{\circ}C$, the DPEAP concentration was 10%, the catalyst $({NH_{4})_{2}HPO_{4}$ concentration was 7.0%, and the fixing agent hexamethylol melamine (HMM)/DPEAP weight ratio was 1/8. (3) The wrinkle recovery of the processed fabrics increased with increasing DPEAP concentration. (4) The drape stiffness of the cotton fabrics treated by DPEAP have shown essentially no change until increasing DPEAP concentration to 15 %, however DPEAP concentration exceeds 20% the drape stiffness increased drastically with increasing DPEAP concentration. When DPEAP concentration is kept constant the drape stiffness increased with increasing $({NH_{4})_{2}HPO_{4}$ concentration and HMM/DPEAP weight ratio. (5) The tensile strength of the processed fabrics was lower than that of untreated fabrics, but the tensile strength retention increased with increasing DPEAP concentration.

  • PDF

A Study on Fire Performance Evaluation of EIFS on Anti-Flaming Finish by Cone Calorimeter Test (콘칼로리미터에 의한 외단열시스템의 방염 화재성능평가를 위한 연구)

  • Min, Se-Hong;Sun, Ju-Seok;Kim, Sang-Chul;Choi, Yong-Mook;Lee, Seok-Ki
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.106-111
    • /
    • 2012
  • In this study, EIFS (Exterior insulation finish system) of exterior cladding was applied Cone calorimeter test to confirm the effect of flame retardant. As a results, the initial ignition points in accordance with the coated form and concentration of the flame retardant was delayed. But flame resistant treatment of EIFS cladding to control the fire will not affect confirmed that. In addition, EIFS that uses high-density and low-density due to difference in the density of the impact of the fire was no difference. The exterior of the ignition experiment occurred before and after 40 seconds, heat release rate to 100 seconds appears to occur about 90 % compared with the other exterior wall materials, the initial fire spread very fast was confirmed. EIFS cladding in order to prevent the spread of fire in the application of EIFS legally use is limited by the use of the building. And flame spread can be prevented, such as a vertical outer wall compartment measures are urgently needed.

Characteristics of Flame Retardent and Mothproof Conservation of Microwave Heated wood (마이크로파 가열 목재의 방염·방충 복합 보존처리 특성)

  • Kim, Chong-Gun;Park, Cheul-Woo;Yoon, Tae-Ho;Lim, Nam-Gi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.234-246
    • /
    • 2013
  • It was found that test piece heated rapidly by 3 kW microwave for 5 minutes satisfies the targeted temperature and the percentage of moisture content, and the highest rate of weight increase is obtained in case of 120 minute immersion in the mixture of phosphates and heterocyclic compounds, from the result of such analysis as: kiln drying schedule, flame retardent by flammability test, insect resistance by termites, and permeability of combined penetrant for the wood after assigning multifunctional finish by immersing conifer structural frame, which is used for the frame work of wooden house and indoor/outdoor finishing in flame retardant and insect repellent materials mixture with the remaining heat of microwave. In addition, after a test of flame retardent treated item, it was identified that every mixture of phosphates corresponds with the standards of flame retardent, and upon investigation of moritality of 7 days after putting termites, it was showed that test piece immersed in the mixture of phosphates and heterocyclic compounds has the best characteristics, showing over 96% of high moritality. From the analysis of inward permeability of combined penetrant for the wood, it was decided that excellent performance in the flame retardent and insect resistance of the wood revealed due to full penetration of combined penetrant as it was found that combined penetrant penetrated through the whole inner cells of the wood.

Characteristics of Recycled m-Aramid and TPP Complex Solutions in Preparation and Cotton Fibers after Coating (재활용 메타 아라미드와 TPP 복합용액의 제조 및 면섬유 코팅 후 특성분석)

  • Kim, Sam Soo;Lee, Ji Min;Cho, Ho Hyun;Ryoo, Kyu Yul
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.292-302
    • /
    • 2013
  • Cotton fabrics treated with hybrid materials were developed and prepared. A halogen-free flame retardant and an aromatic amide were blended and applied to cotton fabrics. Thermal and physical properties of the treated cotton fabrics were investigated. The surface of the pure and coated cotton fabrics was characterized by Fourier transform infrared spectroscopy. The elemental composition of the coated surface of the cotton fabric was measured using X-ray photoelectron spectroscopy and compared with that of pure cotton fabric. After being solved in N,N-dimethylacetamide, m-aramid and triphenylphosphine oxide (TPP) were applied to cotton fabrics through a dip-pad-coagulation process. The treated cotton fabrics with recycled m-aramid/TPP resulted in increased limited oxygen index values and thermal resistance.

Mechanical and Thermal Properties of Industrial Protective Fabric with Recycled m-Aramid and Natural Fiber

  • Sung, Eun Ji;Baek, Young Mee;An, Seung Kook
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.227-236
    • /
    • 2018
  • As consciousness of safety becomes an important social issue, the demand for protective clothing is increasing. Conventional flame-retardant cotton working wear has low durability, and working wear with m-aramid fibers are stiff, heavy, less permeable, and expensive. In this study, recycled m-aramid and cotton have been blended to produce woven fabric of different compositions to enhance high performance and comfort to solve aforementioned problems. The fabrics were analyzed according to constituents and various structural factors. Mechanical properties were measured using KES-FB system. The measured thermal properties are TGA, $Q_{max}$, TPP and RPP. Fabric with polyurethane yarn covered by m-aramid/cotton spun yarn is observed to have good wearability. The fabric of open end spun yarn showed more stiffness than that of ring spun yarn. The sample with the high count of yarn has more smooth surface. In addition, high m-aramid content fabric is considered to have relatively high stiffness when using as clothing. In TGA the fabric with higher m-aramid content showed more stable decomposition behavior. The fabric having rough surface showed lower heat transfer properties in $Q_{max}$. The influence of the fabric thickness was important in convection and radiant heat test.

Characteristics Analysis of Highly Elastic Materials according to the Graphite Content and a Simulation Study of Physical Properties Prediction Using a Nonlinear Material Model (열팽창성 그래파이트 함량에 따른 고탄성 도료 소재의 특성 분석 및 비선형 재료모델을 활용한 물성 예측 시뮬레이션 연구)

  • Yu, Seong-Hun;Lee, Jong-Hyuk;Kim, Dae-cheol;Lee, Byung-Su;Sim, Jee-Hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.250-260
    • /
    • 2022
  • In this research, a high-elasticity acrylic emulsion binder with core-shell polymerization and self-crosslinking system is mixed with a flame-retardant water-dispersed polyurethane (PUD) binder. In addition, finite element analysis was conducted through virtual engineering software ANSYS by applying three representative nonlinear material models. The most suitable nonlinear material model was selected after the relative comparison between the actual experimental values and the predicted values of the properties derived from simulations. The selected nonlinear material model is intended to be used as a nonlinear material model for computational simulation analysis that simulates the experimental environment of the vibration test (ASTM E1399) and the actual fire safety test (ASTM E1966). When the mass fraction of thermally expandable graphite was 0.7%, the thermal and physical properties were the best. Among the nonlinear material models, the simulation result of the Ogden model showed the closest value to the actual result.

The Korea Academia-Industrial cooperation Society (유리섬유 복합재료를 이용한 화재 비상통로용 스크린 소재 성능에 관한 연구)

  • Lee, Jung-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.653-659
    • /
    • 2018
  • High-rise buildings and complex facilities are a representative urban system for the masses, and it requires an increasing role of commodity and safety. Smoke and toxic gasses can cause accidents due to fire in these systems. The purpose of this study is to develop a fiber screen material for emergency evacuation passages that can be avoided quickly and safely in cases of disasters. The fiber screen material is applicable to folding devices for emergency evacuation passages. The material is different from general steel material in that it is lightweight with less burden during storage for a long time in a roll form in a folding device. It also has an excellent secondary function in that it is less affected by radiant heat. Three kinds of fiber screen materials were selected that have good flame retardancy and post-processing characteristics. A performance evaluation was performed by a heat shrinkage test, contact heat test, combustibility test, flame retardancy test, tensile strength test, and tear strength test. As a result, the lightweight fabric shows excellent performance through post-processing, and silicone resin coating can secure safety of the pizza by the fiber screen material performance and radiant heat. The optimum post-treatment conditions were evaluated by performing a burning test after coating two kinds of glass fibers and four types of flame-retardant silicone resins with different weight and thickness.

Investigation of Compressive Strength and Foaming Characteristics of Acid Anhydride Epoxy Foam by Foaming Agent (발포제에 따른 산무수물계 에폭시 폼의 압축강도 및 포밍특성 분석)

  • Kwon, Dong-Jun;Kim, Jong-Hyun;Park, Sung-Min;Kwon, Il-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.133-138
    • /
    • 2018
  • Polymer foams were used to fill the void in the structure in addition to flame retardant and heat insulation. Polymer foams such as polyurethane, polyisocyanurate, poly(vinyl chloride), polyethylene terephthalate were used to weight lighting materials. In this study, epoxy foam was used to improve mechanical properties of polymer foam. Acid anhydride type hardener reacts with polyol. Using this phenomenon, if blowing agent was added into epoxy resin using acid anhydride type hardener, formation and compressive properties of epoxy foam was studied. Formation of polymer foam was compared with type of blowing agent and concentration of blowing agent via compressive test. As these results, optimized condition of epoxy foam was found and epoxy foam had better compressive property than other polymer foam.