• Title/Summary/Keyword: flame Stability

Search Result 394, Processing Time 0.025 seconds

Flame Diagnosis using Image Processing Technique

  • Kim, Song-Hwan;Lee, Tae-Young;Kim, Myun-Hee;Bae, Joon-Young;Lee, Sang-Ryong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.45-51
    • /
    • 2002
  • Recently the interest for the environment is increasing. So the criterion for the evaluation of the burner has changed. For efficient driving problem, if the thermal efficiency is higher and the oxygen in exhaust gas is lower, then burner is evaluated better. For environmental problem. burner must satisfy NOx limit, soot limit and CO limit. Generally the experienced operator judge of the combustion status of the burner by the color of flame. we don't still have any satisfactory solution against it. the relation of the combustion status and the color of the flame hasn't still been established. This paper is the study about the relation of the combustion status and the color of the flame. This paper describes development of real time flame diagnosis technique that evaluate and diagnose combustion state such as consistency of components in exhaust gas, stability of flame in quantitative sense. In this paper, it was proposed on the flame diagnosis technique of burner using image processing algorithm, the parameter extracted from the image of the flame was used as the input variables of the flame diagnostic system. at first, linear regression algorithm and multiple regression algorithm was used to obtain linear multi-nominal expression. Using the constructed inference algorithm, the amount of NOx and CO of the combustion gas was successfully inferred. the combustion control system will be realized sooner or later.

A study on the stability of turbulent diffusion flame in double swirl flows (이중선회류중의 난류확산화염의 안정화에 관한 연구)

  • 조용대;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1669-1678
    • /
    • 1990
  • The annular and coaxial swirl flows between which LPG is supplied was selected to study the swirling flames in double co-swirl flows. The objective of this study is to research into the effects of double co-swirl flow conditions on the stability limit, the reverse flow boundary, and the time mean temperature distributions of the swirling flames. The increase of swirl intensity of axial flow makes the stability limit decrease, but the annular swirl flow (SM>0.5) makes stability and swirl intensity of axial flow increase, And the existence of axial swirl flow makes flame intensive and small in size, and this may be applicable to the design of high power compact combustor.

Combustion Characteristics of CH4 Nonpremixed Flame with Recession Distance (메탄 비예혼합 화염의 후퇴거리에 따른 연소특성)

  • Kim, Jun-Hee;Ku, Kun-Woo;Hong, Jung-Goo;Lee, Choong-Won;Kim, In-Su;Cheong, In-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.285-291
    • /
    • 2012
  • A lot of research on the stability of nonpremixed flames has focused on the fuel-nozzle and quarl geometries. Of the work carried out, only a small amount has focused on the stability of the nonpremixed flame according to the recession distance and air-nozzle geometry. Therefore, in this study, a coaxial-diffusion-type gas burner with a swirler is designed for the systematic investigation of the combustion characteristics of a $CH_4$ flame depending on the recession distance and secondary air-nozzle geometry. 1st air is flowed through the swirler, and 2nd air is flowed through each nozzle. It is shown that the secondary air velocity greatly influences the flame length and shape. There is an optimum recession distance for each nozzle for the best combustion efficiency. In this study, it is shown that the optimized recession distance is nearly half the outer diameter of the air-supply nozzle.

A Study for Measurements of In-Cylinder Residual Gas Fraction using Fast Response FID in an SI Engine (스파크점화기관에서 고속응답 FID를 이용한 실린더내 잔류가스량 측정에 관한 연구)

  • 송해박;조한승;이종화;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.80-89
    • /
    • 1998
  • The residual gas in an spark-ignition engine is one of important factors on emissions and performance such as combustion stability. With high residual gas fractions, flame speed and maximum combustion temperature are decreased and these are deeply related with combustion stability especially at idle and NOx emission at relatively high engine load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating parameters. In the present study, the quantitative measurement technique of residual gas fraction was studied by using Fast Response Flame Ionization Detector(FRFID). The measuring technique and model for estimation of residual gas fraction were reported in this paper. By the assuming that the raw signal from FRFID saturates with the same slope for firing and misfiring cycle, in-cylinder hydrocarbon(HC) concentration can be estimated. Residual gas fraction can be obtained from the in-cylinder HC concentration measured at firing and motoring condition. The developed measurement and calibration procedure were applied to the limited engine operating and design condition such as intake manifold pressure and valve overlap. The results show relevant trends by comparing those from previous studies.

  • PDF

Studies on Synthesis of Liquid Polyester Polyol by using DMT(Dimethylterephthalate) and NDC(Dimethyl-2,6-Naphthalene Dicarboxylate) (DMT(Dimethylterephthalate), NDC(Dimethy1-2,6-Naphthalene Dicarboxylate)를 이용한 액상 폴리에스터 폴리올의 합성에 관한 연구)

  • Kim, Sang-Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.317-327
    • /
    • 2009
  • In this study DMT(Dimethylterephthalate), NDC(Dimethyl-2, 6-Naphthalene Dicarboxylate) were used to synthesize polyester polyol which shows enhanced storage stability, improved flame retardancy, and good compressive strength. If DMT and NDC react respectively with DEG(Diethylene Glycol) which is kind of linear diol, the obtained polyester polyols tend to crystallize easily after the reaction. In case of DMT, PA(Phthalic Anhydride) which has asymmetric structure was introduced to retard the crystallization. In case of NDC, DPG(Dipropylene Glycol) which has an methyl side chain was introduced to prevent the crystallization. It was found that to introduce DPG was much more effective method to prevent the crystallization than PA. NDC and DMT were reacted together with DPG for various compositions of NDC:DMT(8:2, 6:4, 4:6 mol ratio). The obtained NDC-DMT-DPG based polyester polyol showed improved flame retardancy, and good compressive strength with increasing the content of NDC.

Combustion Characteristic of Anode Off Gas for Fuel Cell Reformer (개질기용 Anode Off Gas의 연소특성에 관한 연구)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.5-10
    • /
    • 2012
  • The reformer system is a chemical device that drives the conversion of hydrocarbon to hydrogen rich gas under high temperature environment($600-1,000^{\circ}C$). Generally, NG(Natural Gas) or AOG(Anode Off Gas) is used as fuel of fuel cell reformer combustion system. The experimental study to analyze the combustion characteristics of a premixed ceramic burner used for 0.5-1.0 kW fuel cell reformer was performed. Ceramic burner experiments using NG and AOG were carried out to investigate the flame stability characteristics by heating capacity, equivalence ratio and different fuels respectively. The results show that surface flames can be classified into green, red, blue and lift-off flames as the equivalence ratio of methane-air mixture decreases. And the stable flames can be established using NG and AOG as reformer fuel in the perforated ceramic burner. In particular, the blue flame is found to be stable at a lean equivalence ratio under different mixture conditions of NG and AOG for the 0.5 to 1.0 kW fuel cell system power range. NOx emission is under 60 ppm between 0.70 to 0.78 of equivalence ratio and CO emission is under 50 ppm between 0.70 to 0.84 of equivalence ratio.

Preliminary Combustion Tests in Bi-Swirl Coaxial Injectors Using Gaseous Methane/Gaseous Oxygen Propellants (기체메탄/기체산소 추진제를 이용한 동축 와류형 분사기에서의 예비 연소실험)

  • Hwang, Donghyun;Bak, Sujin;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.70-80
    • /
    • 2019
  • Combustion tests using six bi-swirl coaxial injectors with different shapes and recess lengths were performed in a model combustion chamber capable of flame visualization. By utilizing gaseous methane and gaseous oxygen instead of actual propellants, the effects of injector design and experimental conditions on the flame structure and combustion stability were analyzed. It was found that not only the experimental conditions but also the injector geometry such as the recess length and orifice diameter had a considerable influence on the combustion stability. In addition, it was confirmed that the heat release pattern changed with the occurrence of combustion instability.

A Combustion Characteristics of Attached Jet Flame under the Regular Oscillation (규칙적인 진동 하에서 노즐 부착된 제트화염의 연소특성)

  • Kim, Dae-Won;Lee, Kee-Man
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • A general combustion characteristics of forcing nonpremixed jet in laminar flow rates have been conducted experimentally to investigate the effect of forcing amplitude with the resonant frequency of fuel tube. There are two patterns of the flame lift-off feature according to the velocity increasing; one has the decreasing values of forcing amplitude on the lift-off occurrence when a fuel exit velocity is increasing, while the other has the increasing values. These mean that there are the different mechanisms in the lift-off stability of forced jet diffusion flame. Especially, the characteristics of attached jet flame regime are concentrically observed with flame lengths, shapes, flow response and velocity profiles at the nozzle exit as the central figure. The notable observations are that the flame enlogation, in-homing flame and the occurrence of a vortical motion turnabout have happened according to the increase of forcing amplitude. It is understood by the velocity measurements and visualization methods that these phenomena have been relevance to an entrainment of surrounding oxygen into the fuel nozzle as the negative part of the fluctuating velocity has begun at the inner part of the fuel nozzle.

Edge Flame propagation for Twin Premixed Counterflow Slot Burner (대향류 슬롯 버너에서 이중 예혼합 선단화염의 전파특성)

  • Clayton, David B.;Cha, Min-Suk;Ronney, Paul D.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.60-64
    • /
    • 2006
  • Propagation rates ($U_{edge}$) of various premixed, twin edge-flames were measured as a function of global strain rate ($\sigma$), mixture strength, and Lewis number (Le). Using a counterflow slot-jet burner with electrical heaters at each end, both advancing (positive $U_{edge}$) and retreating (negative $U_{edge}$) edge-flames can be studied as they propagate along the long dimension of the burner. Experimental results are presented for premixed methane/air twin flames in terms of the effects of $\sigma$ on $U_{edge}$. Both low-$\sigma$ and high-$\sigma$ extinction limits were discovered for all mixtures tested. As a result, the domain of edge-flame stability was obtained in terms of heat loss factor and normalized flame thickness, and comparison with the numerical result of other researchers was also made. For low ($CH_4/O_2/CO_2$) and high ($C_3H_8$/air) Lewis number cases, propagation rates clearly show a strong dependence on Le.

  • PDF

A Study on Flame Extinction Behavior in Downstream Interaction between SNG/Air Premixed Flames (SNG/Air 예혼합 화염들의 하류상호작용에 있어서 화염 소화 거동에 관한 연구)

  • Sim, Keunseon;Lee, Keeman
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.48-60
    • /
    • 2016
  • Experimental and numerical studies were conducted to investigate flame behaviors near flammable limits for downstream-interacting SNG-air premixed flames in a counter-flow configuration. The SNG fuel consisted of a methane, a propane, and a hydrogen with volumetric ratios of 91, 6, and 3%, respectively. The most appropriate priority for some reliable reaction mechanisms examined was given to the mechanism of UC San diego via comparison of lean extinction limits attained numerically with experimental ones. Flame stability map was presented with a functional dependencies of lower and upper methane concentrations in terms of global strain rate. The results show that, at the global strain rate of $30s^{-1}$, lean extinction boundary is slanted while rich extinction one is relatively less inclined because of the dependency of such extinction boundary shapes on deficient reactant Lewis number governed by methane mainly. Further increase of global strain rate forces both extinction boundaries to be more slanted and to be shrunk, resulting in an island of extinction boundary and subsequently one flame extinction limit. Extinction mechanisms for lean and rich, symmetric and asymmetric extinction boundary were identified and discussed via heat losses and chemical interaction.