• Title/Summary/Keyword: flaking-resistance

Search Result 4, Processing Time 0.022 seconds

Study on Flaking Resistance of Hot-dip Galvanizing Coating

  • Taixiong, Guo;Ping, Yuan;Yongqing, Jin;chunfu, Liu;Wei, Li
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.143-146
    • /
    • 2010
  • For the issue of flaking of the hot-dip galvanizing coating during drawing, the microcosmic characteristics of the coatings have been analyzed and experiments have been done to investigate the influence of coating thickness, Al content and steel substrate strength on its flaking-resistance. The results show that the fact of flaking is that the coating partially flaked off at the position far away from interface of steel substrate and coating, and not entirely flaked off from steel substrate because of poor adhesion. The flaking-resistance of coating decreases with the increasing of coating thickness and steel substrate strength, and increases with the increasing of Al content in coating at the same experimental conditions.

An evaluation of arc sprayed layer on the erosion property (Arc Sprayed부의 Erosion 특성평가)

  • 배강열;김희진
    • Journal of Welding and Joining
    • /
    • v.5 no.2
    • /
    • pp.27-34
    • /
    • 1987
  • The characteristics of arc sprayed layer were studied with hardness test and microstructural observation. The erosion resistance of arc sprayed layer was also evaluated using a method of steel ball blasting test which was proposed in this study as a test method for measuring the erosion properties in the impact wear condition. By an impact of the molten droplets on the redeposited substrate, lamella structure was formed which contains laminated oxide layers, fissures, and porosities. As a result of mechanical tests, it was shown that the sprayed specimen showed higher hardness than the substrate, but it resulted in higher erosion rate than the substrate. The poor erosion property obtained with a sprayed coating was considered to be attributable to easy flaking off the the layers laminated with brittle oxide layers.

  • PDF

A study on frictional characteristics in galvannealed sheet steel using one flat friction test (편마찰 실험을 이용한 합금화 온도별 GA 강판의 마찰특성에 관한 연구)

  • Jeon Sung-Jin;Lee Jung-Min;Kim Sang-Ju;Kim Byung-Min
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1575-1578
    • /
    • 2005
  • As GA(Galvannealed sheet steel, GA) has good corrosion resistance, weldability and paintability as well as excellent stamping formability it's demand is rapidly increasing for automotive panel. But the layer of the Galvannealed sheet steel is easy to have a coating layer such as powdering and flaking in the press process because it is composed of Fe-Zn alloy. Therefore, the process condition is properly required to form the surface treated sheet steel. The frictional characteristics with dies are changed according to the annealing temperature, $505^{\circ}C,\;515^{\circ}C\;and\;540^{\circ}C$ during the process. To obtain the frictional characteristics of GA sheet steel in this study, on flat friction test is conducted. The friction coefficient is compared with the variation of pressure and velocity, viscosity of lubricant at the various galvannealed temperatures.

  • PDF

Evaluation about Weathering Characteristics of Granite at Sangju Area (상주지역 화강암의 풍화 특성에 대한 평가)

  • Kang, Changwoo;Kim, Bongsu;Son, Kwangrok;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.17-25
    • /
    • 2016
  • The rocks exposed on the surface undergo expedite weathering process due to the effects of climatic process, etc. and the weathering process changes the properties of minerals, thereby lowering the stability of rocks. Therefore, it is important to examine the composition of minerals in order to investigate the resistance of rocks against weathering, which is performed by weathering sensitivity analysis. And microscopic flaking test was performed for the bored samples in this study and the composition of minerals that are vulnerable to weathering was measured through mode analysis. The lithological and mineralogical weathering factors were evaluated through this process. Furthermore, the degree of progress of weathering was identified by quantitatively measuring the actual mineral composition of rocks through X-Ray diffraction analysis and identifying the secondary minerals through observation with a scanning electron microscope. This analyzing the weathering sensitivity was analyzed to be capable of determining appropriate indicators that can determine weather resistance and predicting the weathering grade using chemical weathering speed.