• Title/Summary/Keyword: fixture loading

Search Result 123, Processing Time 0.026 seconds

Influence of internal connection length on screw loosening in internal connection implants (내측 연결 임플란트에서 지대주 내부길이가 나사 풀림에 미치는 영향)

  • Kim, Ji-Sun;Park, Young-Bum;Choi, Hynmin;Kim, Sungtae;Kim, Hyeon Cheol;Kim, Sun Jai;Moon, Hong-Seok;Lee, Jae-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.3
    • /
    • pp.251-257
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate whether the internal abutment length affected screw stability in an internal connection implant. Materials and methods: Twenty long internal connection implants (Replus system, $4.7{\times}11.5mm$) were selected for this investigation. Abutments were assigned to four groups depending on the length of the internal connection (abutments with internal lengths of 1, 2, 3, and 4 mm, respectively). Each implant fixture specimen was embedded in resin medium and connected to an abutment with an abutment screw. A load of 100 N, applied at an angle of $30^{\circ}$ to the long axis of the implant, was repeated for $1.0{\times}10^6$ cycles. Reverse torque values (RTV) were recorded before and after loading, and the change in RTV was calculated. Data were analyzed with the Kruskal-Wallis test. Results: The change in RTV was not significantly different among the groups (P>.05). Screw loosening and fractures were not observed in any groups, and joint stability was maintained. Conclusion: The internal length of the abutment may not significantly affect the degree of screw loosening.

An 1 year prospective comparative study evaluating the effect of microthread on the maintenance of marginal bone level (임프란트 미세나사선이 주위골 수준변화에 미치는 영향에 대한 1년간의 전향적 비교 연구)

  • Shin, Dong-Hwan;Cho, Kyoo-Sung;Park, Kwang-Ho;Moon, Ik-Sang
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.3
    • /
    • pp.349-358
    • /
    • 2003
  • The success of dental implant therapy relies mainly upon the presence and maintenance of bone adjacent to implant. An 1-year prospective study was performed, upon the patients who were diagnosed as having chronic adult periodontitis, and had been treated with dental implant. The purpose of this study was to measure the radiographic bone level changes proximal to Astra Tech Single Tooth Implants (ATST, Astra Tech AB, $M{\"{o}}lndal$, Sweden) with microthread and Astra Tech TiOblast Implant (ATTB) without microthread supporting fixed partial prosthesis. Measurements were used to determine mean marginal bone loss during the first year of loading, 17 subjects with its partial prosthesis supported by 37 implants were followed up for an 1-year period. The marginal bone loss of implants was positively correlated with the retention factor, microthread($Microthread^{TM}$) in crestal area of ATST. The results were as follows. 1. The mean marginal bone loss of ATST was 0.226${\pm}$0.395mm, while ATTB was 0.440${\pm}$0.360mm. There was a statistically significant difference between ATST and ATTB (p<0.05). 2. The mean bone loss of the upper jaw fixtures was 0.269${\pm}$0.265mm for ATST and 0.529${\pm}$0.417mm for ATTB . There was a statistically significant difference between ATST and ATTB (p<0.05). In the lower jaw the corresponding figures were 0.167${\pm}$0.231mm and 0.313${\pm}$0.214mm, respectively. There was no significant difference between ATST and ATTB (p>0.05). 3. The mean bone loss of ATST was lower than that of ATTB at all sites according to bone quality. There was a statistically significant difference between ATST and ATTB at bone quality type III(p <0.05). In conclusion, the mean bone loss of ATST was smaller than that of ATTB . Therefore, the retention factor of crestal area, microthread ($Microthread^{TM}$) was effective to maintenance of marginal bone level around fixture.

Retrospective clinical study of an implant with a sandblasted, large-grit, acid-etched surface and internal connection: analysis of short-term success rate and marginal bone loss

  • Lee, Jae-Wang;An, Jun Hyeong;Park, Sang-Hoon;Chong, Jong-Hyon;Kim, Gwang-Seok;Han, JeongJoon;Jung, Seunggon;Kook, Min-suk;Oh, Hee-Kyun;Ryu, Sun-Youl;Park, Hong-Ju
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.42.1-42.7
    • /
    • 2016
  • Background: The purpose of this retrospective study was to evaluate the clinical utility of an implant with a sandblasted, large-grit, acid-etched (SLA) surface and internal connection. Methods: Six patients who received dental implants in the Department of Oral and Maxillofacial Surgery, Chonnam National University Dental Hospital, were analyzed by factors influencing the success rate and marginal bone loss. Factors included patient's age, sex, implant installation site, whether bone graft was done, type of bone graft materials, approaching method if sinus lift was done, and the size of the fixture. In addition, the marginal bone loss was analyzed by using a radiograph. Results: All implants were successful, and the cumulative survival rate was 100 %. Average marginal bone loss of 6 months after the installation was 0.52 mm and 20 months after the functional loading was 1.06 mm. Total marginal bone resorption was 1.58 mm on average. There was no statistically significant difference in mesial and distal marginal bone loss. Conclusions: The short-term clinical success rate of the implant with an SLA surface and internal connection was satisfactory. Moreover, the marginal bone loss was also consistent with the implant success criteria.

Evaluation of the stability of sandblasted, large-grit, acid-etched implants with tapered straight body design (테이퍼드 직선형 SLA 임플란트의 안정성 평가)

  • Kim, Yong-Gun;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.2
    • /
    • pp.80-88
    • /
    • 2018
  • Purpose: Implant surface modification and implant design are the principle targets for achieving successful primary stability. The aim of this study was to measure implant stability quotient (ISQ) values of sandblasted, large-grit, acid-etched (SLA) implants with tapered straight body design during the healing period, and to determine the various factors affecting implant stability. Materials and Methods: To measure implant stability, resonance frequency analysis (RFA) was performed in 26 patients (13 women and 13 men) with 44 SLA implants with tapered straight body design. Implant stability (ISQ values) was evaluated at baseline and healing abutment connection (12 weeks), and the correlations between RFA and insertion torque (IT), bone quality, and jawbone were determined. Results: The mean ISQ value of the implants was $69.4{\pm}10.2$ at the time of implant placement (baseline) and $81.4{\pm}6.9$ at the time of healing abutment connection (P < 0.05). Significant differences were found between RFA and bone quality and between RFA and jawbone (P < 0.05). No significant differences were found between RFA and IT, insertion area, fixture diameter, and implant length (P > 0.05). Conclusion: ISQ values of SLA implants with tapered straight body design were high at baseline and healing abutment connection. It was concluded that SLA implants with tapered straight body design show improved primary and secondary stability, and that immediate or early loading may be applicable.

The Comparison between the success rates of single implants replacing the mandibular first and second molar (하악 제1, 2 대구치를 대체하는 단일 임프란트 간의 성공률 비교)

  • Lee, Hang-Bin;Paik, Jung-Won;Kim, Chang-Sung;Choi, Seong-Ho;Lee, Keun-Woo;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.101-112
    • /
    • 2004
  • Osseointegrated implnats have proven to be successful in both full and partial edentulous patients since the 1960s and recently have shown successful results when used to restore single tooth missing. However, in most studies reporting the success of single implants, single implants replacing anterior teeth are more frequently mentioned than posterior single implants. Moreover, in studies regarding posterior single implants, the replaced region seemed to be variable; the maxilla, mandible and areas from the first premolar to the second molar were mentioned. However, considering the difference in bone quality in the mandible and maxilla, and the increased occlusal force in the posterior region, the success rates in each region may be different. In this study, the cumulative success rates and amount of bone loss of single implants replacing the mandibular first and second molar, respectively, were compared and analyzed to come to the following conclusion. 1. The 20 (20 persons) single implants that were placed in the mandibular first molar region were all successful and showed a 100% 5 year cumulative success rate. Among the 27 (24 persons) single implants replacing the mandibular second molar, 8 failed (27.63%) showing a 5 year cumulative success rate of 70.37%. 2. Among the 8 failed implants, one showed symptoms of postoperative infection and one complained of parenthesia. 6 implants failed after functional loading; 5 showed mobility and one resulted in fixture fracture. 3. After the attachment of the prosthesis, there was no significant statistical difference regarding the marginal bone loss in group 1 and group 2 during the checkup period (P>0.05). In conclusion, restoration of the mandibular first molar using single implants was found to be an excellent treatment modality, and when replacing mandibular second molars with single implants, poor bone quality and risk of overloading must be considered.

A PHOTOELASTIC STRESS ANALYSIS IN MANDIBULAR DISTAL - EXTENSION REMOVABLE PARTIAL DENTURES WITH VARIOUSLY DESIGNEO INDIRECT RETAINERS (간접유치장치 설계변화에 따른 하악유리단 국소의치의 광탄성 응력분석)

  • Kang, Seung-Jong;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.2
    • /
    • pp.183-197
    • /
    • 1990
  • The purpose of this study was to analyse the magnitude and distribution of stresses using a Photoelastic model from and distal - extension removable partial dentures With four designed indirect retainers. The designs of the indirect retainers were as follows : Design No. 1 : Aker's clasp on 1st bicuspid with no indirect retainer. Design No. 2 : Aker's clasp on 1st bicuspid with indirect retainer on canine. Design No. 3 : Extension of the reciprocal arm of Aker's clasp toward incisal rest on canine. Design No. 4 : Connection with the indirect retainer as in No. 2 and extension of reciprocal arm of Aker' s clasp. A photoelastic model was made of the epoxy resin(PL - 1) and hardner(PLH - 1) and coated with plastic cement -1(PC -1) at the lingual surface of the epoxy model and set with chrome - cobalt partial dentures. A unilateral vertical load of 10kg to the right 1st molar and a vertical load of 10kg to the middle portion of the metal bar crossing both the 1st molars of the right and left, were applied. With the use of specially designed jig, fixture; loading device and the reflective circular polariscope, we obtained the following results : 1. When the unilateral vertical load and the vertical load of the middle portion of the metal bar were applied, design No. 2, 3 and 4 exhibited the higher stress concentration at the root apices and their surrounding tissues of the primary and secondary abutment teeth. 2. When the unilateral vertical load applied to design No. 2,3 and 4 the root apices of the primary and secondary abutment teeth and their surrounding tissues and the nonloaded side of edentulous area exhibited and even stress distribution. 3. When the vertical load was applied, the stress concentration fringe in the primary and secondary abutment teeth was in the order of No. 1,4,2 and 3. 4. No.1 and 4 exhibited the higher distrorted stress concentration at the primary teeth and the edentulous area in the nonloaded side. 5. No.2 design reduced the stresses at the apices of the alveoli of the primary abutment teeth bilaterally as well as on the crest of the residual ridge on the nonloaded side. 6. No. 2 design exhibited the most favorable stress distribution.

  • PDF

Design and Verification of a Novel Composite Sandwich Joint Structure (새로운 개념의 복합재 샌드위치 체결부 구조의 설계와 검증)

  • Kwak, Byeong-Su;Ju, Hyun-woo;Kim, Hong-Il;Dong, Seung-Jin;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.384-392
    • /
    • 2017
  • Sandwich panels with three different joint configurations were tested to design a novel sandwich joint structure that can effectively support both the tensile and compressive loads. The sandwich core was mainly aluminum flex honeycomb but the PMI foam core was limitedly applied to the ramp area which is transition part from sandwich to solid laminate. The face of sandwich panel was made of carbon fiber composite. For configuration 1, the composite flange and the sandwich panel were cocured. For configurations 2 and 3, an aluminum flange was fastened to the solid laminate by HI-LOK pins and adhesive. The average compressive failure loads of configurations 1, 2, and 3 were 295, 226, and 291 kN, respectively, and the average tensile failure loads were 47.3 (delamination), 83.7 (bolt failure), and 291 (fixture damage) kN, respectively. Considering the compressive failure loads only, both the configurations 1 and 3 showed good performance. However, the configuration 1 showed delamination in the corner of the composite flange under tension at early stage of loading. Therefore, it was confirmed that the structure that can effectively support tension and compressive loads at the same time is the configuration 3 which used a mechanically fastened aluminum flange so that there is no risk of delamination at the corner.

A COMPARATIVE STUDY OF THE 1-PIECE AND 2-PIECE CONICAL ABUTMENT JOINT: THE STRENGTH AND THE FATIGUE RESISTANCE

  • Kwon, Taek-Ka;Yang, Jae-Ho;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.780-786
    • /
    • 2007
  • Statement of problem. The performance and maintenance of implant-supported prostheses are primarily dependent upon load transmission both at the bone-to-implant interface and within the implant-abutment-prosthesis complex. The design of the interface between components has been shown to have a profound influence on the stability of screw joints. Purpose. The Purpose of this study was to compare the strength and the fatigue resistance of 1-piece and 2-piece abutment connected to oral implant, utilizing an internal conical interface. Material and methods. Twenty $Implatium^{(R)}$ tapered implants were embedded to the top of the fixture in acrylic resin blocks. Ten $Combi^{(R)}$(1-piece) and $Dual^{(R)}$(2-piece) abutments of the same dimension were assembled to the implant, respectively. The assembled units were mounted in a testing machine. A load was applied perpendicular to the long axis of the assemblies and the loading points was at the distance of 7mm from the block surface. Half of 1-piece and 2-piece abutment-implant units were tested for the evaluation of the bending strength, and the others were cyclically loaded for the evaluation of the fatigue resistance until plastic deformation occurred. Nonparametric statistical analysis was performed for the results. Results. Mean plastic and maximum bending moment were $1,900{\pm}18Nmm,\;3,609{\pm}106Nmm$ for the 1-piece abutment, and $1,250{\pm}31Nmm,\;2,688{\pm}166Nmm$ for the 2-piece abutment, respectively. Mean cycles and standard deviation when implant-abutment joint showed a first plastic deformation were $238,610{\pm}44,891$. cycles for the 1-piece abutment and $9,476{\pm}3,541$ cycles for the 2-piece abutment. A 1-piece abutment showed significantly higher value than a 2-piece abutment in the first plastic bending moment (p<.05), maximum bending moment (p<.05) and fatigue strength (p<.05). Conclusion. Both 1-piece and 2-piece conical abutment had high strength and fatigue resistance and this suggests long-term durability without mechanical complication. However, the 1-piece conical abutment was more stable than the 2-piece conical abutment in the strength and the fatigue resistance.

Study on the stress distribution depending on the bone type and implant abutment connection by finite element analysis (지대주 연결 형태와 골질에 따른 저작압이 임프란트 주위골내 응력분포에 미치는 영향)

  • Park, Hyun-Soo;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.531-554
    • /
    • 2006
  • Oral implants must fulfill certain criteria arising from special demands of function, which include biocompatibility, adequate mechanical strength, optimum soft and hard tissue integration, and transmission of functional forces to bone within physiological limits. And one of the critical elements influencing the long-term uncompromise functioning of oral implants is load distribution at the implant- bone interface, Factors that affect the load transfer at the bone-implant interface include the type of loading, material properties of the implant and prosthesis, implant geometry, surface structure, quality and quantity of the surrounding bone, and nature of the bone-implant interface. To understand the biomechanical behavior of dental implants, validation of stress and strain measurements is required. The finite element analysis (FEA) has been applied to the dental implant field to predict stress distribution patterns in the implant-bone interface by comparison of various implant designs. This method offers the advantage of solving complex structural problems by dividing them into smaller and simpler interrelated sections by using mathematical techniques. The purpose of this study was to evaluate the stresses induced around the implants in bone using FEA, A 3D FEA computer software (SOLIDWORKS 2004, DASSO SYSTEM, France) was used for the analysis of clinical simulations. Two types (external and internal) of implants of 4.1 mm diameter, 12.0 mm length were buried in 4 types of bone modeled. Vertical and oblique forces of lOON were applied on the center of the abutment, and the values of von Mises equivalent stress at the implant-bone interface were computed. The results showed that von Mises stresses at the marginal. bone were higher under oblique load than under vertical load, and the stresses were higher at the lingual marginal bone than at the buccal marginal bone under oblique load. Under vertical and oblique load, the stress in type I, II, III bone was found to be the highest at the marginal bone and the lowest at the bone around apical portions of implant. Higher stresses occurred at the top of the crestal region and lower stresses occurred near the tip of the implant with greater thickness of the cortical shell while high stresses surrounded the fixture apex for type N. The stresses in the crestal region were higher in Model 2 than in Model 1, the stresses near the tip of the implant were higher in Model 1 than Model 2, and Model 2 showed more effective stress distribution than Model.

Factors associated with the survival and marginal bone loss of dental implants: a 5-year retrospective study (임플란트의 생존과 변연골 소실에 영향을 미치는 인자들)

  • Song, Eul-Rak;Lee, Jae-Kwan;Um, Heung-Sik;Park, Se-Hwan;Chang, Beom-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.4
    • /
    • pp.280-292
    • /
    • 2016
  • Purpose: The purpose of this study was to compare the long-term survival rate and peri-implant marginal bone loss related to multiple risk factors including the clinician's experience. Materials and Methods: Four hundred twenty implants in 146 patients, who had involved a supportive periodontal therapy program every 3 to 6 months and had follow up data for at least 5 years, were selected as the study group. Peri-implant marginal bone loss, data of demographic, implant and surgical characteristics were collected from peri-apical radiographs and chart review. Implant survival was regarded as the remaining with radiographic marginal bone level in excess of 50% of the fixture length for any reason. Results: The cumulative survival rate after 5 years of loading was 94.9%. In binary logistic regression analysis, smoking status (P = 0.033) and presence of spontaneous cover screw exposure (P < 0.001) were significantly related to 5-year survival of implants. In stepwise multiple regression analysis, smoking status (P < 0.001), type of abutment connection (P < 0.001) and implant surface (P = 0.033) were significantly related to peri-implant marginal bone level. And the year of resident was not statistically related to 5-year implant survival in simple logistic regression analysis (P = 0.171). Conclusion: Smoking status, spontaneous cover screw exposure, type of abutment connection and implant surface might influence the implant success. There was no significant correlation between the year of resident and implant failure.