• Title/Summary/Keyword: fixed-end moments

Search Result 15, Processing Time 0.017 seconds

Multilayered viscoelastic beam loaded in torsion under strain-path control: A delamination analysis

  • Victor I. Rizov
    • Advances in materials Research
    • /
    • v.13 no.2
    • /
    • pp.87-102
    • /
    • 2024
  • This paper is focused on the delamination analysis of a multilayered beam structure loaded in torsion under strain-path control. The beam under consideration has a rectangular cross-section. The layers of the beam are made of different viscoelastic materials which exhibit continuous inhomogeneity in longitudinal direction. Since the delamination is located inside the beam structure, the torsion moments in the two crack arms are obtained by modeling the beam as an internally static undetermined structure. The strain energy stored in the beam is analyzed in order to derive the strain energy release rate (SERR). Since the delamination is located inside the beam, the delamination has two tips. Thus, solutions of the SERR are obtained for both tips. The solutions are verified by analyzing the beam compliance. Delamination analysis with bending-torsion coupling is also performed. The solutions derived are timedependent due to two factors. First, the beam has viscoelastic behavior and, second, the angle of twist of the beam-free end induced by the external torsion moment changes with time according to a law that is fixed in advance.

Dynamic analysis of floating bridges under combined earthquakes and waves

  • Ikjae Lee;Moohyun Kim;Jihun Song;Seungjun Kim
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.115-139
    • /
    • 2024
  • In this study, numerical study of a long, straight, side-anchored floating bridge with discrete pontoons subjected to combined earthquakes and waves is conducted. Ground motions with magnitude corresponding to 200 YRP (years return period) earthquake in South Korea are generated based on the spectral matching method from a past earthquake record in California. Several sensitivity studies are carried out for bridge end condition, for different site classes (hard rock S1 and soft and deep soil S5), and for three different excitations (earthquake only, wave only, and earthquake-wave combined). Bridge and pontoon motions, bending moments along the bridge, and mooring tensions are systematically examined through coupled time-domain simulations by commercial program OrcaFlex. The numerical results show that the impact of earthquakes on floating bridges is still of importance especially for soft soil although ground motions are less directly applied to the structure than fixed bridges.

Free vibration of axially loaded Reddy-Bickford beam on elastic soil using the differential transform method

  • Yesilce, Yusuf;Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.453-475
    • /
    • 2009
  • The literature regarding the free vibration analysis of Bernoulli-Euler and Timoshenko beams on elastic soil is plenty, but the free vibration analysis of Reddy-Bickford beams on elastic soil with/without axial force effect using the Differential Transform Method (DTM) has not been investigated by any of the studies in open literature so far. In this study, the free vibration analysis of axially loaded Reddy-Bickford beam on elastic soil is carried out by using DTM. The model has six degrees of freedom at the two ends, one transverse displacement and two rotations, and the end forces are a shear force and two end moments in this study. The governing differential equations of motion of the rectangular beam in free vibration are derived using Hamilton's principle and considering rotatory inertia. Parameters for the relative stiffness, stiffness ratio and nondimensionalized multiplication factor for the axial compressive force are incorporated into the equations of motion in order to investigate their effects on the natural frequencies. At first, the terms are found directly from the analytical solutions of the differential equations that describe the deformations of the cross-section according to the high-order theory. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the governing differential equations of the motion. The calculated natural frequencies of one end fixed and the other end simply supported Reddy-Bickford beam on elastic soil using DTM are tabulated in several tables and figures and are compared with the results of the analytical solution where a very good agreement is observed and the mode shapes are presented in graphs.

A Study on Moment Gradient Factor for Inelastic Lateral-Torsional Buckling of Stepped I-Beam Subjected to Uniformly Distributed Load and End Moment (연속경간 하중을 받는 I형 스텝보의 비탄성 횡-비틀림 좌굴강도산정을 위한 모멘트 구배계수 연구)

  • Son, Ji-Min;Park, Jong-Sup
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • This paper investigates inelastic lateral-torsional buckling of stepped beams subjected to uniformly distributed load and end moments. A three-dimensional finite-element program ABAQUS (2007) and a regression program MINITAB(2006) were used to analytically develop new design equation for singly and doubly stepped beams with simple boundary condition. The flanges of the smaller cross-section in the stepped beams were fixed at 30.48 by 2.54 cm, whereas the width and thickness of the flanges of the larger cross-section varied. The web thickness and height of the beams were kept at 1.65 cm and 88.9 cm, respectively. The ratios of the flange thickness, flange width, and stepped length of beam are considered with analytical parameters. Two groups of 27 cases and 36 cases, respectively, were analyzed for doubly and singly stepped beams in the inelastic buckling range. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. The distributions of residual stress of the cross-section is same as shown in Pi and Trahair (1995) and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The comparisons between results from proposed equations and the results from finite element analyses were presented in this paper. The maximum differences of two results are of 13% for the doubly stepped beam and 10% for the singly stepped beam. The proposed equations definitely improve current design methods for the inelastic lateral-torsional buckling problem and increase efficiency in building and bridge design.

Changes in frictional resistance between stainless steel bracket and various orthodontic wires according to a change in moment (모멘트 변화에 따른 브라켓과 교정용 선재 사이의 마찰력 변화)

  • Jeong, Hye-Jin;Kim, Kwang-Won;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.37 no.2 s.121
    • /
    • pp.137-149
    • /
    • 2007
  • Objective: The purpose of this study was to compare changes in frictional resistance between the bracket and wire under dry and wet conditions according to a change in moment. Methods: A stainless steel bracket of $0.022"{\times}0.028"$ slot, and $0.019"{\times}0.025"$ stainless steel, beta-titanium, and nickel-titanium wires were used. A 10 mm length lever was attached to the test (sliding) brackets to generate a moment. The experimental model was designed to allow tipping until contacts were established between the wire and the mesiodistal edges of the bracket slot. The moment was generated by suspending a 100 g or 200 g weight on the end of the lever. The moments applied were $1000g{\cdot}mm\;(100g{\times}10mm)\;and\;2000g{\cdot}mm\;(200g{\times}10mm)$. The test brackets were ligated with elastomeric ligature for a constant ligation force and the fixed brackets were ligated with stainless steel ligature. Brackets were moved along the wire by means of an universal testing machine, and maximum frictional resistances were recorded. Results: Stainless steel wire showed least frictional resistance and there was no significant difference between beta-titanium and nickel-titanium except at $2000g{\cdot}mm$ moment in wet conditions. Frictional resistance of all wires increased as the moment increased from $1000g{\cdot}mm\;to\;2000g{\cdot}mm$. Under wet conditions, the frictional resistance of stainless steel wires increased in both $1000g{\cdot}mm\;and\;2000g{\cdot}mm$ moment conditions, but frictional resistance of nickel-titanium and beta-titanium increased only in $2000g{\cdot}mm$ conditions. Conclusion: These results indicated that various conditions influence on frictional resistance. Therefore, laboratory studies of frictional resistance should simulate clinical situation.