• Title/Summary/Keyword: fixation by freeze drying

Search Result 3, Processing Time 0.02 seconds

Studies on the Fixation of Acetaldehyde by Freeze Drying (냉동건조방법에 의한 Acetaldehyde 고정에 관한 연구)

  • Lee, Young-Chun;Lee, Kyung-Hae
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.13-16
    • /
    • 1989
  • Attempts were made to fix acetaldehyde on base materials, which were selected from carbohydrates, by freeze drying. More acetaldehyde was fixed, in general, on combined base materials than single base materials, and mannitol+lactose were the best among the combined base materials tested. But the combination of mannitol and maltodextrin appeared to be more economical for the mass production. Loss of acetaldehyde during freeze drying was decreased as the concentration of the combined base material was increased, and it reached minimum at 40% of the base material. As dryer chamber pressure was reduced, loss of acetaldehyde during drying was decreased.

  • PDF

Microwave fixation of Setaria Digitata for scanning electron microscopy (선충류의 주사전자현미경적 관찰을 위한 마이크로웨이브 고정법)

  • Lee, San-Soo;Cho, Kyoung-Oh;Shin, Kil-Sang;Shin, Sung-Shik
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.2
    • /
    • pp.203-207
    • /
    • 2007
  • Conventional processing of biological materials including nematode parasites for scanning electron microscopy includes fixation with glutaraldehyde and osmium, followed by dehydration in an ascending grade of ethanol, and finally freeze drying. This procedure takes about 8 to 12 h depending on the characteristics of samples. Microwave irradiation of 2,450 MHz enhance the action of cross-linking fixatives and can greatly accelerate various stages of tissue processing. In this study, samples of nematode parasites, Setaria digitata, were fixed by a combination of conventional chemical fixation and the microwave irradiation during the process. The microwave irradiation was also incorporated in the serial dehydration process with ethanol. The complete procedure from the initial fixation to the completion of dehydration with ethanol was reduced to 1 h with good preservation of the ultrastructural details of the specimens.

SIMS Protein imaging with nanoparticle tagged antibody for simultaneous omic imaging

  • Lee, Seon-Yeong;Mun, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.230.1-230.1
    • /
    • 2015
  • One of the major problems of biological ToF-SIMS imaging is the lack of protein and peptide imaging. Most of biological story telling is mianly based on proteins. The biological implication of lipid ToF-SIMS imaging would be much higher if protein imaging is provided together. Utilizing high secondary ion yields of metals, proteins can be ToF-SIMS imaged with nanoparticle tagged proteins. Nanoparticles such as Fe3O4, SiO2, PbS were used for imaing NeuN, MCH, Orexin A, ${\alpha}$ synucline, TH(Tryosine Hydroxylase) in mouse tissues with a spatial resolution of ${\sim}2{\mu}m$ using a TOF-SIMS. Lipids and neurotransmitters images obtained simultaneously with protein images were overlayed for more deeper understanding of neurobiology, which is not allowed by any other bioimaging technqiues. The protein images from TOF-SIMS were compared with confocal fluorescence microscopy and NanoSIMS images. A new sample preparation method for imaging single cell membranes in a tissue using the vibrotome technique to prepare a tissue slice without any fixation and freeze drying will be also presented briefly for Hippocampus and Hypothalamus tissues.

  • PDF