• 제목/요약/키워드: five forces model

검색결과 77건 처리시간 0.018초

군 병원 간호사의 감성지능, 조직내 의사소통이 팀워크에 미치는 영향 (The Influence of Nurses' Emotional Intelligence and Communication within the Organization on Teamwork in Armed Forces Hospitals)

  • 윤숙희;이태화;박하영;송연화
    • 한국직업건강간호학회지
    • /
    • 제27권1호
    • /
    • pp.67-75
    • /
    • 2018
  • Purpose: The purpose of this study was to identify the influence of nurses' emotional intelligence and communication within the organization on teamwork in Armed Forces hospitals. Methods: This study employed a cross-sectional design with a convenience sample of 195 nurses from five Armed Forces hospitals in Korea. Data were collected through a self-administered questionnaire from August 7 to 23, 2017 and analyzed using descriptive statistics, t-test, ANOVA, Pearson's correlation coefficient, and multiple regression. The SPSS/WIN 21.0 program was used for all analyses. Results: The degree of teamwork was $5.03{\pm}0.73$, with scores ranging from 1 to 7. Emotional intelligence and communication within the organization were positively correlated with teamwork. Specifically, communication within the organization (${\beta}=.60$, p<.001), the intensive care unit (${\beta}=.21$, p=.001), and the medical general ward (${\beta}=.17$, p=.010) were identified as factors influencing teamwork. This model explained 51% of the variance in teamwork, and it was statistically significant (F=35.09, p<.001). Conclusion: These results imply the need to develop an approach including communication within the organization to improve teamwork among nurses in Armed Forces hospitals.

버스형상 무딘물체의 공력특성에 관한 수치해석적 고찰 - 난류모델과 이산화법의 영향 - (A Numerical Study on the Aerodynamic Characteristics of a Bus-Like Bluff Body - Effect of Turbulence Model and Discretisation Scheme -)

  • 김민호;국종영;천인범
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.115-123
    • /
    • 2003
  • With the advent of high performance computers and more efficient numerical algorithms, computational fluid dynamics(CFD) has come out as a modem alternative for reducing the use of wind tunnels test in automotive engineering. However, in spite of the fact that many competent researchers have made all their talents in developing turbulence model over since the past dozen or more years, it has been an important impediment in using the CFD effectively to design machinery and to diagnose or to improve engineering problems in the industry since the turbulence model has been acting as the Achilles' tendon in aspect of the reliability even to this time. In this study, Reynolds-averaged Wavier-Stokes equations were solved to simulate an incompressible turbulent flow around a bus-like bluff body near ground plane. In order to investigate the effect of the discretisation schemes and turbulence model on the aerodynamic forces several turbulence models with five convective difference schemes are adopted. From the results of this study, it is clear that choice of turbulence model and discretisation scheme profoundly affects the computational outcome. The results also show that the adoption of RNG $k-\varepsilon$ turbulence model and nonlinear quadratic turbulence model with the second order accurate discretisation scheme predicts fairly well the aerodynamic coefficients.

Evaluation of seismic p-yp loops of pile-supported structures installed in saturated sand

  • Yun, Jungwon;Han, Jintae;Kim, Doyoon
    • Geomechanics and Engineering
    • /
    • 제30권6호
    • /
    • pp.579-586
    • /
    • 2022
  • Pile-supported structures are installed on saturated sloping grounds, where the ground stiffness may decrease due to liquefaction during earthquakes. Thus, it is important to consider saturated sloping ground and pile interactions. In this study, we conduct a centrifuge test of a pile-supported structure, and analyze the p-yp loops, p-yp loops provide the correlation between the lateral pile deflection (yp) and lateral soil resistance (p). In the dry sand model (UV67), the p-yp loops stiffness increased as ground depth increased, and the p-yp loops stiffness was larger by approximately three times when the pile moved to the upslope direction, compared with when it moved to the downslope direction. In contrast, no significant difference was observed in the stiffness with the ground depth and pile moving direction in the saturated sand model (SV69). Furthermore, we identify the unstable zone based on the result of the lateral soil resistance (p). In the case of the SV69 model, the maximum depth of the unstable zone is five times larger than that of the dry sand model, and it was found that the saturated sand model was affected significantly by kinematic forces due to slope failure.

The influence of disc wear on the behavior of the temporomandibular joint: a finite element analysis in a specific case

  • Duarte, Ricardo J.;Ramos, Antonio;Mesnard, Michel
    • Advances in biomechanics and applications
    • /
    • 제1권3호
    • /
    • pp.159-167
    • /
    • 2014
  • The aim of this study was to evaluate the influence of disc thickness on the normal behavior of the temporomandibular joint. Based on a specific patient case, CT scan images showing accentuated wear in the right disc were reconstructed and the geometrical and finite element model of the temporomandibular joint structures (cranium, mandible, articular cartilages and articular discs) was developed. The loads applied in this study were referent to the five most relevant muscular forces acting on the temporomandibular joint during daily tasks such as talking or eating. We observed that the left side structures of the temporomandibular joint (cranium, mandible and articular disc) were the most affected as a consequence of the wear on the opposite articular disc (right side). From these results, it was possible to evaluate the differences in the two sides of the joint and understand how a damaged articular disc influences the behavior of this joint and the possible consequences that can arise without treatment.

Clinical Decision Making Development of Clinical Physical Therapists under the Fee for Service and the Prescription of Physician

  • Lee, In-Hee;Lee, Hye Young
    • The Journal of Korean Physical Therapy
    • /
    • 제24권3호
    • /
    • pp.171-180
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the clinical decision making (CDM) development process throughout the comparison between novice and expert physical therapist as well as develop a CDM model for physical therapists under the fee-for-service (FFS) and physicians' prescriptions. Methods: Purposive sampling techniques were used to select 10 clinical physical therapists paired into five groups (each pair consisted of 1 novice and 1 expert physical therapist). The coding schemes were extracted from interviews and through within- and across-case analyses, cases were summarized. The reliability of coding schemes was confirmed by checking of case summaries by the participants. Results: Novice and expert physical therapists were influenced by two themes, internalized theme and external forces or information. Novice clinicians depended more on external forces or information. Although clinicians should care patients under the FFS and physician's prescription, expert clinicians were more likely to rely on internalized knowledge. Conclusion: The findings of the present study may be used by educators or association officials enhance CDM abilities and knowledge pools of student or novices as well as develop a guide to suitable novices or students under the specific context limiting the development of their CDM.

Output-only modal parameter identification for force-embedded acceleration data in the presence of harmonic and white noise excitations

  • Ku, C.J.;Tamura, Y.;Yoshida, A.;Miyake, K.;Chou, L.S.
    • Wind and Structures
    • /
    • 제16권2호
    • /
    • pp.157-178
    • /
    • 2013
  • Output-only modal parameter identification is based on the assumption that external forces on a linear structure are white noise. However, harmonic excitations are also often present in real structural vibrations. In particular, it has been realized that the use of forced acceleration responses without knowledge of external forces can pose a problem in the modal parameter identification, because an external force is imparted to its impulse acceleration response function. This paper provides a three-stage identification procedure as a solution to the problem of harmonic and white noise excitations in the acceleration responses of a linear dynamic system. This procedure combines the uses of the mode indicator function, the complex mode indication function, the enhanced frequency response function, an iterative rational fraction polynomial method and mode shape inspection for the correlation-related functions of the force-embedded acceleration responses. The procedure is verified via numerical simulation of a five-floor shear building and a two-dimensional frame and also applied to ambient vibration data of a large-span roof structure. Results show that the modal parameters of these dynamic systems can be satisfactorily identified under the requirement of wide separation between vibration modes and harmonic excitations.

Predicting the seismic behavior of torsionally-unbalanced RC building using resistance eccentricity

  • Abegaz, Ruth A.;Kim, In-Ho;Lee, Han Seon
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.1-17
    • /
    • 2022
  • The static design approach in the current code implies that the inherent torsional moment represents the state of zero inertial torsional moments at the center of mass (CM). However, both experimental and analytical results prove the existence of a large amount of the inertial torsional moment at the CM. Also, the definition of eccentricity by engineers, which is referred to as the resistance eccentricity, is defined as the distance between the center of mass and the center of resistance, which is conceptually different from the static eccentricity in the current codes, defined as the arm length about the center of rotation. The difference in the definitions of eccentricity should be made clear to avoid confusion about the torsion design. This study proposed prediction equations as a function of resistance eccentricity based on a resistance eccentricity model with advantages of (1) the recognition of the existence of torsional moment at the CM, (2) the avoidance of the confusion by using resistance eccentricity instead of the design eccentricity, and (3) a clear relationship of applied inertial forces at the CM and resisting forces. These predictions are compared with the seismic responses obtained from time-history analyses of a five-story building structure under moderate and severe earthquakes. Then, the trend of the resistance eccentricity corresponding to the maximum edge drift is investigated for elastic and inelastic responses. The comparison given in this study shows that these prediction equations can serve as a useful reference for the prediction in both the elastic and the inelastic ranges.

Shake-table responses of a low-rise RC building model having irregularities at first story

  • Lee, Han Seon;Jung, Dong Wook;Lee, Kyung Bo;Kim, Hee Cheul;Lee, Kihak
    • Structural Engineering and Mechanics
    • /
    • 제40권4호
    • /
    • pp.517-539
    • /
    • 2011
  • This paper presents the seismic responses of a 1:5-scale five-story reinforced concrete building model, which represents a residential apartment building that has a high irregularity of weak story, soft story, and torsion simultaneously at the ground story. The model was subjected to a series of uni- and bi-directional earthquake simulation tests. Analysis of the test results leads to the following conclusions: (1) The model survived the table excitations simulating the design earthquake with the PGA of 0.187 g without any significant damages, though it was not designed against earthquakes; (2) The fundamental mode was the torsion mode. The second and third orthogonal translational modes acted independently while the torsion mode showed a strong correlation with the predominant translational mode; (3) After a significant excursion into inelastic behavior, this correlation disappeared and the maximum torsion and torsion deformation remained almost constant regardless of the intensity of the two orthogonal excitations; And, (4) the lateral resistance and stiffness of the critical columns and wall increased or decreased significantly with the large variation of acting axial forces caused by the high bi-directional overturning moments and rocking phenomena under the bi-directional excitations.

하지의 동역학 모델 (A Dynamic Model of the Human Lower Extremity)

  • 최기영;손권;정민근
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1993년도 춘계학술대회논문집
    • /
    • pp.1-9
    • /
    • 1993
  • A human gait study is required for the biomechanical design of running shoes. A tow-dimensional dynamic model was developed in order to analyze lower extremity kinematics and loadings at the right ankle, knee, and hip joints. The dynamic model consists of three segments, the upper leg, the lower leg, and the foot. Each segment was assumed to be a rigid body with one or two frictionless hinge joints. The lower extremity motion was assumed to be planar in the sagittal plane. A young male subject was involved in the gait test and his anthropometric data were measured for the calculation of segement mass and moment of inertia. The experimental data were obtained from three trials of walking at 1.2m/s. The foot-floor reaction data were measured from a Kistler force plate. The kinematic data were acquired using a three-dimensional motion measurement system (Expert Vision) with six markers, five of which were placed on the right lower extremity segments and the rest one was attached to the force plate. Based on the model and experimental data for the stance phase of the right foot, the calculated vertical forces reached up to 492, 540, and 561 N at the hip, knee, ankle joints, respectively. The flexion-extension moments reached up to 155, 119, and 33 Nm in magnitude at the corresponding joints.

  • PDF

HiGANCNN: A Hybrid Generative Adversarial Network and Convolutional Neural Network for Glaucoma Detection

  • Alsulami, Fairouz;Alseleahbi, Hind;Alsaedi, Rawan;Almaghdawi, Rasha;Alafif, Tarik;Ikram, Mohammad;Zong, Weiwei;Alzahrani, Yahya;Bawazeer, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.23-30
    • /
    • 2022
  • Glaucoma is a chronic neuropathy that affects the optic nerve which can lead to blindness. The detection and prediction of glaucoma become possible using deep neural networks. However, the detection performance relies on the availability of a large number of data. Therefore, we propose different frameworks, including a hybrid of a generative adversarial network and a convolutional neural network to automate and increase the performance of glaucoma detection. The proposed frameworks are evaluated using five public glaucoma datasets. The framework which uses a Deconvolutional Generative Adversarial Network (DCGAN) and a DenseNet pre-trained model achieves 99.6%, 99.08%, 99.4%, 98.69%, and 92.95% of classification accuracy on RIMONE, Drishti-GS, ACRIMA, ORIGA-light, and HRF datasets respectively. Based on the experimental results and evaluation, the proposed framework closely competes with the state-of-the-art methods using the five public glaucoma datasets without requiring any manually preprocessing step.