• Title/Summary/Keyword: fish kills

Search Result 23, Processing Time 0.018 seconds

Formation of Sedimentation Pool within Irrigation Reserviors for Water Quality Improvement (저수지 수질개선을 위한 저수지 내 침전지 조성)

  • 박병흔
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.1
    • /
    • pp.73-82
    • /
    • 2000
  • Large quantitive of polllutants are washed into reservoirs during storm events. These polllutants contribute to eutrophication, such as algal blooms and fish kills. This study was conducted for the purpose of assessing the pollutant removal possibilities of sedimentation pool formed by deep dredging of a reservoir inlet. Water quality data were collected in the Masan reservoir, whose inlet has been dredged deep like sedimentation pool. The average concentration of chemical oxygen demand(COD) , toatal nitrogen(T-N) and total phosphrous(T-P) in the deep dredged area were 8.7 ~20.5mg/ι (T-N), 0.17~0.84mg/ι(T-P), which were 4.9%(COD), 29.0%(T-N) and 44.8%(T-P) higher than those of middle part of the reservior. The texture of sediment in the dredged area was silty loam, while that of the middle part was sandy clay loam. Organic matter contents, T-N and T-P of the bottom soil in the dredge area showed higher values than the middle part of the reservoirs. From these results, it was considered thedeep dredged area in the inlet of reservoir might play a key role to settle pollutant particulate. Based on the result of water quality analysis, deep dredging of the reservoir inlet could be assessed to reduce T-N and T-P of the reservoir about 6.5% , 8.3%, respectively. However, the effect of the sedimentation pool would be raised if the settled particles were taken into account in assessing water quality improvement for the reservoir. Accordingly, dredging of a reservoir inlet to make a shape of sedimentation pool is recommended for water quality improvement of reservoir in the stage of dredging plan.

  • PDF

SATELLITE DETECTION OF RED TIDE ALGAL BLOOMS IN TURBID COASTAL WATERS

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.471-474
    • /
    • 2006
  • Several planktonic dinoflagellates, including Cochlodinium polykrikoides (p), are known to produce red tides responsible for massive fish kills and serious economic loss in turbid Northwest Pacific (Korean and neighboring) coastal waters during summer and fall seasons. In order to mitigate the impacts of these red tides, it is therefore very essential to detect, monitor and forecast their development and movement using currently available remote sensing technology because traditional ship-based field sampling and analysis are very limited in both space and temporal frequency. Satellite ocean color sensors, such as Sea-viewing Wide Field-of-view Sensor (SeaWiFS), are ideal instruments for detecting and monitoring these blooms because they provide relatively high frequency synoptic information over large areas. Thus, the present study attempts to evaluate the red tide index methods (previously developed by Ahn and Shanmugam et al., 2006) to identify potential areas of red tides from SeaWiFS imagery in Korean and neighboring waters. Findings revealed that the standard spectral ratio algorithms (OC4 and LCA) applied to SeaWiFS imagery yielded large errors in Chl retrievals for coastal areas, besides providing false information about the encountered red tides in the focused waters. On the contrary, the RI coupled with the standard spectral ratios yielded comprehensive information about various ranges of algal blooms, while RCA Chl showing a good agreement with in-situ data led to enhanced understanding of the spatial and temporal variability of the recent red tide occurrences in high scattering and absorbing waters off the Korean and Chinese coasts. The results suggest that the red tide index methods for the early detection of red tides blooms can provide state managers with accurate identification of the extent and location of blooms as a management tool.

  • PDF

Analysis on the Optical Absorption Property of Sea Waters Dominated by Alexandrium affine in Coastal Waters off Tongyeong, 2017 (2017년 통영 해역에서의 Alexandrium affine 우점 해수의 흡광 특성)

  • Kim, Wonkook;Han, Tai-Hyun;Jung, Seung Won;Kang, Donhyug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.563-570
    • /
    • 2019
  • Red tide has caused massive fish kills in Korean coastal waters with devastating economic loss in the aquaculture industry since 1995. Remote sensing technique has shown to be effective for the detection of red tide in wide areas, where the absorption property of red tide water plays a central role in understanding the red tide reflectance. This study analyzed the optical absorption property of sea waters dominated by the dinoflagellate specie of Alexandirum affine, off the Tongyeong area in August, 2017. Water samples collected from 20 stations in the ship-based campaign were measured for absorption by pigment, suspended solid, and dissolved organic matter, with the corresponding water quality variables such as chlorophyll concentration and total suspended solid. The analysis showed that Alexandrium-dominated water exhibits strong absorption in the spectral range below 400 nm unlike that of diatom-dominated waters, and greater fluctuations in the range of 400 nm - 500 nm. The packaging effect in pigment absorption was stronger in Alexandrium-dominated waters, and the exponent in the absorption by detritus and gelbstoff is disparate for diatom and Alexandrium. In the model for the detritus and gelbstoff absorption (adg(λ)=adg0)e-s(λ-λ0)), the optimal exponent coefficient(s) for the Alexandrium was close to 0.01 rather than to 0.015, which was commonly use for modelling diatom waters.