• Title/Summary/Keyword: fish fermentation

Search Result 169, Processing Time 0.026 seconds

Cultural characterization of probiotic Lactobacillus sakei BK19

  • Yang , Byung Gyoo;Song , Choon Bok;Yeo , In Kyu;Lee , Kyoung Jun;Park , Geun Tae;Lee, Sang Hyeon;Son, Hong Joo;Heo, Moon Soo
    • Journal of fish pathology
    • /
    • v.16 no.2
    • /
    • pp.119-123
    • /
    • 2003
  • We have selected an valuable pmbiotic strain; Lactobacillus sakei BK19 which has wide antagonic spectrum against fish pathogens . Present study investigated cultural characterization of L. sakei BK19 including pH tolerance , susceptibility of antibacterial agents and growth pattern with different environment such as nutritions, temperature and salinity. L. sakei BK19 showed Significantly higher resistance at low pH(around pH 4) environment and relative high antibiotic tolerance . In the study of optimal culture condition, maltose and saccharose provided the optimal nutritional culture condition while lactose and mannitol were unable to supply its carbon source for the fermentation of L. sakei BK19. Moreover. L. sakei BK19 showed good growth at the temperature range of 15 to $45^{o}C$ und the NaCl concentration of 0 to 7%. Hence, this particular probiotic strain may be benificial both in seawater and fresh weter conditions.

Hygienic Superiority of Kimchi (김치의 위생학적 우수성)

  • Kim, Yong-Suk;Shin, Dong-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.2
    • /
    • pp.91-97
    • /
    • 2008
  • Kimchi is a representative traditional food in Korea and a type of vegetable product that is the unique complex lactic acid fermentation in the world. It can be considered as a unique fermented food generated by various flavors, which are not included in raw materials, that can be generated by mixing and fermenting various spices and seasonings, such as red pepper powder, garlic, ginger, and salted fish, added to Chinese cabbages. Functionalities in Kimchi have been approved through several studies and the probiotic function that is mainly based on lactic acid bacteria including their physical functions in its contents has also verified. Studies on the verification of the safety of Kimchi including its physiological functions have been conducted. In particular, the function of lactic acid bacteria, which is a caused of the fermentation of Kimchi. Although the lactic acid bacteria contributed to the fermentation of Kimchi is generated from raw and sub-materials, the lactic acid bacteria attached on Chinese cabbages has a major role in the process in which the fermentation temperature and dominant bacteria are also related to the process. The salt used in a salt pickling process inhibits the growth of the putrefactive and food poisoning bacteria included in the fermentation process of Kimchi and of other bacteria except for such lactic acid bacteria due to the lactic acid and several antimicrobial substances generated in the fermentation process, such as bacteriocin and hydrogen peroxide. In addition, the carbon dioxide gas caused by heterolactic acid bacteria contributes to the inhibition of aerobic bacteria. Furthermore, special ingredients included in sub-materials, such as garlic, ginger, and red pepper powder, contribute to the inhibition of putrefactive and food poisoning bacteria. The induction of the change in the intestinal bacteria as taking Kimchi have already verified. In conclusion, Kimchi has been approved as a safety food due to the fact that the inhibition of food poisoning bacteria occurs in the fermentation process of Kimchi and the extinction of such bacteria.

Characteristics of Potential Gamma-Aminobutyric Acid-Producing Bacteria Isolated from Korean and Vietnamese Fermented Fish Products

  • Vo, Thi Thu-Thao;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.209-221
    • /
    • 2019
  • Gamma-aminobutyric acid (GABA) is a neurotransmitter that exerts several physiological functions and positive effects on human health. The aim of this study was to isolate and characterize the strains that had GABA-producing abilities from various fermented fish products. A total of 91 acid-producing strains were isolated from 41 samples of fermented fish products, and 27 strains showing GABA-producing abilities were identified by the 16S rDNA sequences. Among the strains, 31% strains tolerated at high-salt environment of 10-20% throughout the fermentation of fish sauces. The 27 isolates that produced GABA at various concentrations did so in the range of 5 to 454 mM. These GABA-producing isolates were identified as lactic acid bacteria of 14 strains, which included twelve Lactococcus lactis, one Enterococcus faecium, and one Lactococcus pentosus; eight Bacillus cereus group, which included seven B. thuringiensis and one B. cereus; and five Staphylococcus spp. Interestingly, with Vietnamese fish sauces, we mostly identified species of B. thuringiensis and Staphylococcus spp., while with Korean fermented fish products, the majority of the strains identified belonged to L. lactis. Among the strains, B. thuringiensis LH2134 produced the highest levels of GABA at 366 mM among the strains identified from Vietnamese fish sauces, whereas L. lactis LA43, a new strain isolated from Korean jeotgal (salted shrimp paste), produced the highest amount of GABA at 454 mM and the glutamate concentration in the medium was essential for GABA accumulation. Therefore, such the isolates might serve as good starters for development of more GABA-reinforced foods among fermented fish products.

음식물쓰레기와 폐활성 슬러지를 이용한 생물학적 수소생산

  • Sang, Byeong-In;Lee, Yun-Ji;Kim, Dong-Im;Kim, Dong-Geon;Kim, Ji-Seong;Yu, Myeong-Jin;Park, Dae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.299-306
    • /
    • 2005
  • Anaerobic fermentation of food waste (FW) and waste activated sludge (WAS) for hydrogen production was performed in CSTR (Continuous Stirred tank reactor) under various HRTs and volumetric mixing ratio (V/V) of two substrates, FW and WAS. The specific hydrogen production potential of FW was higher than that of WAS. However, pH drop in the CSTR for hydrogen production from FW was higher than that from WAS. The maintenance of desired pH during fermentative hydrogen production is regarded as the most important operation parameter for the stable hydrogen production. Therefore, when the potential of hydrogen production from FW and better buffer capacity of WAS, the proper mixture of FW and WAS for fermentative hydrogen production were considered as a useful complementary substrate. The maximum yield of specific hydrogen production, 140 mL/g VSS, was found at HRT of 2 day and the volumetric mixing ratio of 20:80 (WAS : FW). The spatial distribution of hydrogen producing bacteria was observed in anaerobic fermentative reactor using fluorescent in situ hybridization (FISH) method.

  • PDF

THE TASTE COMPOUNDS FERMENTED ACETES CHINENSIS (새우젓의 정미성분에 관한 연구)

  • CHUNG Seung-Yong;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.2
    • /
    • pp.79-110
    • /
    • 1976
  • In Korea fermented fish and shellfish have traditionally been favored and consumed as seasonings or further processed for fish sauce. Three major items in production quantity among more than thirty kinds which are presently available in the market are fermented anchovy, oyster and small shrimp. They are usually used as a seasoning mixture of Kimchi in order to provide a distinctive flavor. Fermented small shrimp, Acetes chinensis is most widely and largely used ana occupies an important position in food industry of this country. But no study on its taste compounds has been reported. This study was attempted to establish the basic data for evaluating taste compounds of fermented small shrimp. The changes of such compounds during fermentation as free amino acids, nucleotides and their related compounds, TMAO, TMA, and betaine were analysed. In addition, change in microflora during the fermentation under the halophilic circumstance was also investigated. The samples were prepared with three different salt contents of 20, 30 and $40\%$ to obtain the proper degree of fermentation at a controlled tempeature of $20{\pm}2^{\circ}C$. The results are summarized as follows: Volatile basic nitrogen increased rapidly until 108 days of fermentation and afterwards it tended to increase slowly. Amino nitrogen also increased rapidly until 43 days of fermentation and then increased slowly. Extract nitrogen increased and marked the maximum value at 72 day fermentation and then decreased slowly. ADP, AMP and IMP tended to degrade rapidly while hypoxanthine increased remarkably at 27 day fermentation but slightly decreased at 72 day fermentation. It is presumed that the characteristic flavor of fermented small shrimp might be attributed to the relatively higher content of hypoxanthine. In the free amino acid composition of fresh small shrimp abundant amino acids were proline, arginine, alanine, glycine, lysine, glutamic acid, leucine, valine and threonine in order. Such amino acids like serine, methionine, isoleucine, phenylalanine, aspartic acid, tyrosine and histidine were poor. In small shrimp extract, proline, arginine, alanine, glycine, lysine and glutamic acid were dominant holding $18.5\%,\;14.6\%,\;10.8\%,\;8.7\%,\;8.1\%\;and\;7.7\%$ of total free amino acids respectively. The total free amino acid nitrogen in fresh small shrimp was $63.9\%$ of its extract nitrogen. The change of free amino acid composition in the extract of small shrimp during fermentation was not observed. Lysine, alanine glutamic acid, proline, glycine and leucine were abundant in both fresh sample and fermented products. The increase of total free amino acids during 72 day fermentation reached approximately more than 2 times as compared with that of fresh sample and then decreased slowly. Fermented small shrimp with $40\%$ of salt was too salty to be commercial quality as the results of organoleptic test showed. It is found that 72 day fermentation with $20\%\;and\;30\%$ of salt gave the most favorable flavor. It is convinced that the characteristic flavor of fermented small shrimp was also attributed to such amino acids as lysine, proline, alanine, glycine and serine known as sweet compounds, as glutamic acid with meaty taste, and as leucine known as bitter taste. The amount of betaine increased during fermentation and reached the maximum at 72 day fermentation and then decreased slowly TMA increased while TMAO decreased during fermentation. The amount of TMAO nitrogen in fermented small shrimp was $200mg\%$ on moisture and salt free base. Betaine and TMAO known as sweet compounds were abundant in fermented small shrimp. It is supposed that these compounds could also play a role as important taste compounds of fermented small shrimp. At the initial stage of fermentation, Achromobacter, Pseudomonas, Micrococcus denitrificans which belong to marine bacteria were isolated. After 40 day fermentation, they disappeared rapidly while Halabacterium, Pediococcus, Sarcian, Micrococcus morrhuae and the yeasts such as Saccharomyces sp. and Torulopsis sp. dominated. It is concluded that the most important taste compounds of fermented small shrimp were amino acids such as lysine, proline, alanine, glycine, serine, glutamic acid, and leucine, betaine, TMAO and hypoxanthine.

  • PDF

Enrichment of Lactic Acid Bacteria in Salted Fish, Chromis notatus (유산균 강화 자리젓 제조)

  • Ko, Young-Hwan;Kim, Chang-Yong;Kang, Dong-Sub;Ha, Jin-Hwan;Kim, Soo-Hyun;Kang, Young-Joo;Song, Dae-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.2
    • /
    • pp.200-207
    • /
    • 1991
  • Jariieot is a local food prepared by fermentation of salted fish, Chromis notatus. Since its NaC' content is around 20% like other fermented seafoods, reduction NaCl concentration is desirable to minimize the risk of health hazard. Addition of KCl and enrichment of lactic acid fermentation were attempted to solve the problems resulting from low salt concentration. NaCl and KCl were added to a fish, Chromis notatus simultaneously at concentrations of 10 to 4% and 5 to 2%, respectively. Lactic acid bacteria and glucose at final concentration of 2% were also mixed with the above-salt treated fish to prepare jarijeot. The jarijeot was examined periodically for chemical changes during aging and compared with reference jarijeot containing only 20% of NaCl to find out an appropriate method for quality improvement. The content of ATP and its related compounds was not affected by the concentration of NaCl or the presence of lactic acid bacteria. Nearly no difference in contents of free amino nitrogen, trimethylamine oxide, trimethylamine and volatile basic nitrogen was observed between the jarijeot containing 20% of NaCl only and that containing 10% of NaCl, 5% of KCl, 2% of glucose and cells of Pediococcus halophilus. Moreover, sensory evaluation of both kinds of jarijeots revealed almost the same scores. The number of cells of P. halophilus was maintained at concentration of $10^5$cell/ml for 60days' fermentation in the above mentioned jarijeot containing 10% of NaCl. Its pH was dropped down to 4.2. Accordingly it is possible to prepare jarijeot enriched with lactic acid bacteria if KCl and glucose are added at concentration of 5% and 2%, respectively, in addition to NaCl at a final concentration of 10%.

  • PDF

Fermentation Process for Odor Removal of Oyster (Crassostrea gigas) Hydrolysate and Its Properties (이취 제거를 위한 굴 가수분해물의 발효공정과 제품의 특성)

  • Lee, Su-Seon;Park, Si-Hyang;Kim, Hyeun-A;Choi, Yeung-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.542-550
    • /
    • 2016
  • This study was carried out to investigate the optimal processing conditions for odor removal and maximal antioxidant effects of oyster (Crassostrea gigas) hydrolysate. The optimal hydrolysis conditions were 3.3% neutrase as the protease, $50^{\circ}C$ as the hydrolysis temperature, and 8.3 h as the hydrolysis time. Fish odor of enzymatic oyster hydrolysate was greatly reduced during Saccharomyces cerevisiae fermentation at $24^{\circ}C$ with 0.5% glucose. The protein content of the fermentation product from oyster hydrolysate powder was 25.7%, which contained the major amino acids Glu, Asp, Lys, Arg, Gly, and Ala, whereas Leu, Ala, Phe, Val, and Tau were abundant free amino acids. The important minor minerals were Zn and Fe. Toxicity against Chang cells was not observed in the fermentation product from the oyster hydrolysate up to $200{\mu}g/mL$. The results suggest that fermentation with S. cerevisiae could reduce the fish odor of enzymatic oyster hydrolysate. The hydrolysate has potential application as a food ingredients and nutraceutical.

Changes in Physicochemical Properties of Baik-kimchi during Fermentation (백김치 숙성중 물리화학적 특성변화)

  • 문수경;류홍수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1013-1020
    • /
    • 1997
  • To elicit the effect of fermentation on food quality of the watery Chinese cabbage pickles without fish sauce and red pepper paste(Baik-kimchi), changes in physicochemical properties and microstructure of fiber components were studied. Better water holding capacity(WHC) was showed in Baik-kimchi fermented at $25^{\circ}C$ than that of Baik-kimchi fermented at 5$^{\circ}C$. WHC measured at pH 2 and 6 were ranged from 10.18 to 16.79g/g dried sample for Baik-kimchi fermented at $25^{\circ}C$ and 6.51~14.58g/g dried sample for sample for samples at 5$^{\circ}C$, respectively. The higher WHC was resulted in pH controlled freeze-dried sample to pH 6 than that measured in pH 2 sample. The settling volume(SV) and oil adsorption capacity(OAC) increased with fermentation period and kept the same value for a little while, but slightly decreased in the over ripening period. Baik-kimchi fermented at $25^{\circ}C$ exhibited more shrunk microstructure of parenchyma cell and xylem than those of Baik-kimchi fermented at 5$^{\circ}C$. The appearance of SDF of the both Baik-kimchi ripened at 5$^{\circ}C$ and $25^{\circ}C$ could give granular shape, whereas the overripened Baik-kimchi had smooth surface of SDF. On the other hand, the IDF retained the original shape during fermentation.

  • PDF

Importance of food science and technology in sustainable and resilient food systems - a Northeast Asian perspective (지속가능한 식량체계를 위한 식품과학기술의 중요성 - 동북아시아의 관점)

  • Lee, Cherl-Ho
    • Food Science and Industry
    • /
    • v.54 no.3
    • /
    • pp.196-209
    • /
    • 2021
  • The origines of the Western roasting culture and East Asian boiling culture were studied and the importance of primitive pottery culture (8000-5000 BCE) in the Korea Strait coastal region was discussed. The primitive pottery culture probably initiated the Jjigae (stew) culture and the production of salt. It can be also postulated that fish fermentation, kimchi fermentation, and cereal alcohol fermentation originated during this period. Soybean culture emerged ca. 2,000 BCE in South Manchuria and the Korean Peninsula. This paper focuses on the role of Korean foodways in the food science and technology development for the sustainable and resilient food systems. We are facing a global food crisis caused by population growth, climate change, and high animal food consumption. Studies on the meat analog and cultured meat are the new trend in Food Science and Technology. The importance of the wisdom learned through the Northeast Asian traditional foods, for example, soybean curd (tofu) and meaty flavor production by fermentation for the research on the novel sustainable and resilient food systems are discussed.

Changes in the Contents of Dietary Fibers and Pectic Substances during Fermentation of Baik-kimchi (백김치 숙성중 식이섬유 및 펙틴질의 함량변화)

  • 문수경;류홍수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1006-1012
    • /
    • 1997
  • To observe the food quality of Baik-kimchi which is known as a watery Chinese cabbage pickles without fish sauce and red pepper paste, the changes of dietary fibers and pectic substances during fermentation at 5$^{\circ}C$ and $25^{\circ}C$ were studied. Baik-kimchi fermented at $25^{\circ}C$ showed a greater changes in pH and acidity than those of 5$^{\circ}C$ during storage. Ripened Baik-kimchi products fermented at 5$^{\circ}C$ could be prepared on 9~12 days of fermentation, and those had a pH range from 4.25 to 4.40 and acidity of 0.34~0.53. But in the case of $25^{\circ}C$ fermentation, Baik-kimchi ripened for 3 days showed a pH of 4.02 and acidity of 0.54. The pH and acidity of the Baik-kimchi juice changed more rapidly than those of the Baik-kimchi solid regardless of fermentation temperatures. The content of soluble dietary fiber(SDF) was ranged from 3.06 to 4.87% at 5$^{\circ}C$ and a wide variation in SDF was observed in the sample fermented at $25^{\circ}C$(4.15~11.22%). Insoluble dietary fiber(IDF) were increased from 21.66% to 28.42% in solid of Baik-kimchi during fermentation at 5$^{\circ}C$ and ranged from 21.37% to 24.65% for sample fermented at $25^{\circ}C$. A notable amount of pectin had been dissolved in juice of Baik-kimchi till the best ripening time and showed the level of 223.2mg/100ml at 5$^{\circ}C$ on the day of 9 and 207.3mg/100ml at $25^{\circ}C$ on the day of 2. In contrast, the contents of pectin in solid Baik-kimchi decreased, whereas contents of sodium hexametaphosphate soluble pectin(HXSP) and HCl soluble pectin(HClSP) increased with fermentation period.

  • PDF