• 제목/요약/키워드: first order shear deformation

검색결과 438건 처리시간 0.027초

Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium

  • Kolahchi, Reza;Bidgoli, Ali Mohammad Moniri;Heydari, Mohammad Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1001-1014
    • /
    • 2015
  • Bending analysis of functionally graded (FG) nano-plates is investigated in the present work based on a new sinusoidal shear deformation theory. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. The material properties of nano-plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The size effects are considered based on Eringen's nonlocal theory. Governing equations are derived using energy method and Hamilton's principle. The closed-form solutions of simply supported nano-plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. The effects of different parameters such as nano-plate length and thickness, elastic foundation, orientation of foundation orthtotropy direction and nonlocal parameters are shown in dimensionless displacement of system. It can be found that with increasing nonlocal parameter, the dimensionless displacement of nano-plate increases.

Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory

  • Loghman, Abbas;Faegh, Reza K.;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.533-547
    • /
    • 2018
  • In this paper the time-dependent creep analysis of a thick-walled FG cylinder with finite length subjected to axisymmetric mechanical and thermal loads are presented. First order shear deformation theory (FSDT) is used for description of displacement components. Inner and outer temperatures and outer pressure are considered as thermo-mechanical loadings. Both thermal and mechanical loadings are assumed variable along the axial direction using the sinusoidal distribution. To find temperature distribution, two dimensional heat transfer equation is solved using the required boundary conditions. The energy method and Euler equations are employed to reach final governing equations of the cylinder. After determination of elastic stresses and strains, the creep analysis can be performed based on the Yang method. The results of this research indicate that the boundaries have important effects on the responses of the cylinder. The effect of important parameters of this analysis such as variable loading, non-homogeneous index of functionally graded materials and time of creep is studied on the behaviors of the cylinder.

Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel

  • Kashkoli, Mosayeb Davoudi;Tahan, Khosro Naderan;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.701-715
    • /
    • 2019
  • Using first-order shear deformation theory (FSDT), a semi-analytical solution is employed to analyze creep damage and remaining life assessment of 304L austenitic stainless steel thick (304L ASS) cylindrical pressure vessels with variable thickness subjected to the temperature gradient and internal non-uniform pressure. Damages are obtained in thick cylinder using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The thermo-elastic creep response of the material is described by Norton's law. The novelty of the present work is that it seeks to investigate creep damage and life assessment of the vessels with variable thickness made of 304L ASS using LMP based on first-order shear deformation theory. A numerical solution using finite element method (FEM) is also presented and good agreement is found. It is shown that temperature gradient and non-uniform pressure have significant influences on the creep damages and remaining life of the vessel.

역대칭 복합적층판의 단순화된 고차전단변형을 고려한 휨과 동적 특성 (Bending and Dynamic Characteristics of Antisymmetric Laminated Composite Plates considering a Simplified Higher-Order Shear Deformation)

  • 한성천;윤석호;장석윤
    • 한국강구조학회 논문집
    • /
    • 제9권4호통권33호
    • /
    • pp.601-609
    • /
    • 1997
  • 본 연구에서는 4개의 변수로 구성된 단순화된 고차전단변형이론에 근거한 복합적층판의 휨과 진동결과를 해석하였으며 적층판의 배열형태는 중립축을 중심으로 역대칭으로 적층되어있고 변수를 1개 줄여 해석하여도 기존의 고차전단변형이론의 결과와 비교하여 정확도에 큰 차이가 없음을 알 수 있었다. 단순화된 고차전단변형이론에 의한 결과를 1차전단변형이론과 3차전단변형이론에 의한 해와 비교 분석하였으며 복합재료 설계자나 이론과 실험의 상관관계를 연구하는 연구자 혹은 프로그램의 정확도를 검증하려고 하는 수치해석자들을 위해 결과자료들을 도표화하였다.

  • PDF

면내 압축 및 전단하중을 받는 적층복합판의 좌굴 해석 (Buckling Analysis of Laminated Composite Plates under the In-plane Compression and Shear Loadings)

  • 이원홍;한성천;박원태
    • 한국산학기술학회논문지
    • /
    • 제11권12호
    • /
    • pp.5199-5206
    • /
    • 2010
  • 본 논문에서는 개선된 자연변형률 쉘 요소를 이용한 적층복합판의 좌굴하중을 연구하였다. 면내 잠김과 전단 잠김 현상을 극복하기 위하여 가정자연변형률 방법을 이용하였고, 면내 압축 및 전단하중이 작용하는 경우에 폭-두께 비 및 파이버의 보강방향의 변화에 따른 적층복합판의 고유치 문제를 연구하였다. 쉘 요소의 성능 향상을 위해 새로운 보간점의 조합을 이용한 가정변형률 방법을 사용하였으며 전단보정계수 없이 전단변형을 고려할 수 있는 개선된 1차 전단변형이론을 적용하였다. 본 연구의 결과를 검증하기 위해 참고문헌의 결과들과 비교 분석하였으며 새로운 예제도 추가적으로 연구하였다. 해석결과는 참고문헌의 결과들과 잘 일치함을 알 수 있었다. 면내 전단하중에 의한 좌굴하중의 예측은 향후 관련 연구에 비교자료로 활용될 수 있을 것이다.

Exact dynamic element stiffness matrix of shear deformable non-symmetric curved beams subjected to initial axial force

  • Kim, Nam-Il;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • 제19권1호
    • /
    • pp.73-96
    • /
    • 2005
  • For the spatially coupled free vibration analysis of shear deformable thin-walled non-symmetric curved beam subjected to initial axial force, an exact dynamic element stiffness matrix of curved beam is evaluated. Firstly equations of motion and force-deformation relations are rigorously derived from the total potential energy for a curved beam element. Next a system of linear algebraic equations are constructed by introducing 14 displacement parameters and transforming the second order simultaneous differential equations into the first order simultaneous differential equations. And then explicit expressions for displacement parameters are numerically evaluated via eigensolutions and the exact $14{\times}14$ dynamic element stiffness matrix is determined using force-deformation relations. To demonstrate the accuracy and the reliability of this study, the spatially coupled natural frequencies of shear deformable thin-walled non-symmetric curved beams subjected to initial axial forces are evaluated and compared with analytical and FE solutions using isoparametric and Hermitian curved beam elements and results by ABAQUS's shell elements.

A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate

  • Belabed, Zakaria;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Earthquakes and Structures
    • /
    • 제14권2호
    • /
    • pp.103-115
    • /
    • 2018
  • In this work, a simple but accurate hyperbolic plate theory for the free vibration analysis of functionally graded material (FGM) sandwich plates is developed. The significant feature of this formulation is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the classical plate theory (CPT), instead of 5 as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM face sheet and the homogeneous core and the sandwich with the homogeneous face sheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton's principle. The closed form solutions are obtained by using the Navier technique. The fundamental frequencies are found by solving the eigenvalue problems. Numerical results of the present theory are compared with the CPT, FSDT, order shear deformation theories (HSDTs), and 3D solutions. Verification studies show that the proposed theory is not only accurate and simple in solving the free vibration behaviour of FGM sandwich plates, but also comparable with the higher-order shear deformation theories which contain more number of unknowns.

A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates

  • Remil, Aicha;Benrahou, Kouider Halim;Draiche, Kada;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.325-337
    • /
    • 2019
  • In the present article, cross ply laminated composite plates are considered and a simple sinusoidal shear deformation model is tested for analyzing their flexural, stability and dynamic behaviors. The model contains only four unknown variables that are five in the first order shear deformation theory (FSDT) or other higher order models. The in-plane kinematic utilizes undetermined integral terms to quantitatively express the shear deformation influence. In the proposed theory, the conditions of zero shear stress are respected at bottom and top faces of plates without considering the shear correction coefficient. Equations of motion according to the proposed formulation are deduced by employing the virtual work principle in its dynamic version. The analytical solution is determined via double trigonometric series proposed by Navier. The stresses, displacements, natural frequencies and critical buckling forces computed using present method are compared with other published data where a good agreement between results is demonstrated.

A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory

  • Mokhtar, Youcef;Heireche, Houari;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.397-405
    • /
    • 2018
  • In this paper, a novel simple shear deformation theory for buckling analysis of single layer graphene sheet is formulated using the nonlocal differential constitutive relations of Eringen. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Nonlocal elasticity theory is employed to investigate effects of small scale on buckling of the rectangular nano-plate. The equations of motion of the nonlocal theories are derived and solved via Navier's procedure for all edges simply supported boundary conditions. The results are verified with the known results in the literature. The influences played by Effects of nonlocal parameter, length, thickness of the graphene sheets and shear deformation effect on the critical buckling load are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the buckling nanoplates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations

  • Hachemi, Houari;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bourada, Mohamed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.717-726
    • /
    • 2017
  • In this paper, a new simple shear deformation theory for bending analysis of functionally graded plates is developed. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory and higher-order shear deformation theory. A shear correction factor is, therefore, not required. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. Equations of motion are obtained by utilizing the principle of virtual displacements and solved via Navier's procedure. The elastic foundation is modeled as two parameter elastic foundation. The results are verified with the known results in the literature. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, elastic foundation, and volume fraction distributions are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the bending behaviour of functionally graded plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.