• Title/Summary/Keyword: first leaf

Search Result 1,038, Processing Time 0.062 seconds

Molecular Cloning of Differentially Expressed Genes in First Trap Leaf of Dionaea muscipula by Fluorescent Differential Display (형광 Differential Display법에 의한 파리지옥풀 포충잎트랩 특이발현 유전자 탐색)

  • Kang, Kwon-Kyoo;Lee, Keun-Hyang;Park, Jin-Heui;Hong, Kyong-Ei
    • Journal of Plant Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.307-313
    • /
    • 2003
  • Fluorescent differential display (FDD) is a method for identifying differentially expressed genes in eukaryotic cells. The mRNA FDD technology works by systematic amplification of the 3' terminal regions of mRNAs. This method involve the reverse transcription using anchored primers designed to bind 5'boundary of the poly A tails, followed by polymerase chain reaction (PCR) amplification with additional upstream primers of arbitrary sequences. The amplified cDNA subpopulations are separated by denaturing polyacrylamide electrophoresis. To identify the genes involved in the development of first trap leaf, we applied a FDD method using mRNAs from leaf base, first trap leaf and flower tissue, respectively. We screened several genes that expressed specifically in first trap leaf. Nucleotide sequence analysis of these genes revealed that these were protease inhibitor (PI), myo-inositol-1-phosphate synthase and lipocalin-type prostaglandin D synthase. Northern blot analysis showed that these genes were expressed specifically in first trap leaf (in vivo and in vitro). FDD could prove to be useful for simultaneous scanning of transcripts from multiple cDNA samples and faster selection of differentially expressed transcripts of interest.

Position of Source Leaf Affects Translocation and Distribution of $C^{14}$ Photo-Assimilates in Tomato

  • Lee Sang-Gyu;Lee Chiwon W.
    • Journal of Bio-Environment Control
    • /
    • v.15 no.2
    • /
    • pp.173-176
    • /
    • 2006
  • The relationship between source leaf position and photo-assimilate translocation and distribution was characterized for tomato (Lycopersicon esculentum Mill) grown in the greenhouse. Three different positions of source leaf on the stem (first node above or below the first fruit cluster and $5^{th}$ node above the first fruit cluster) were tested for their influence on $^{14}CO_2$ assimilation and transfer to different parts of the plant. The leaves at the $5^{th}$ node above the first fruit cluster transferred the highest (57%) proportion of $C^{14}$ to other plant parts, followed by leaves home on the first node below the first fruit cluster (50%), and the first node above the first fruit cluster (39%). In all treatments, fruits served as the strongest sink for $C^{14}$, followed by stem, leaf, and root tissues. The leaf home on the $5^{th}$ node above the first fruit cluster transferred the largest amount of $C^{14}$ to the second fruit cluster.

Effects of Auxins and Cytokinins on Organogenesis of Soybean Glycine max L.

  • Kim, Kyong-Ho;Park, Ho-Ki;Park, Moon-Soo;Yeo, Up-Dong
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.95-100
    • /
    • 2001
  • To select the section with shoot formation ability, the calli and shoot formation from three sections (first leaf including cotyledonary node, hypocotyl and cotyledon explants) of 5-days-seedlings of soybean were induced on MS medium supplemented with 1.0 mg/L BAP, 3% sucrose, and 0.3% gelrite for one month. The first leaf section exhibited the highest shoot formation rate (51%), followed the hypocotyl section (10%) and the cotyledon section (0%). The shoot formation rates and shoot number of the four excised sections (whole first leaf, a half of the first leaf, a third of the first leaf and only node) of the first leaf were also investigated on the same medium. A half of the first leaf explant and the third of the first leaf explant had higher shoot formation rates (76-80%) and numbers (3-4 / explants) than those in other two explants. Effects of six cytokinins (kinetin, zeatin, BAP, 2iP, PBA, and TDZ) on shoot formation were determined, using the half of the first leaf explants. Zeatin (1.0 mg/L) exhibited the highest in shoot formation rate (94%) and numbers (8 / explant). In addition, the combined effects of three cytokinins (zeatin, BAP, and TDZ; 0.5, 1.0, 2.0 mg/L, respectively) and an auxin (IAA; 0.0, 0.5, 1.0, 2.0 mg/L) were determined. The combination (1:1, v/v) of zeatin (1.0 mg/L) and IAA (1.0 mg/L) exhibited the highest in shoot formation rate (96%) and numbers (16 / explant), twice more than zeatin (1.0 mg/L) alone. The shoot cuttings were transferred and cultivated on the rooting media supplemented with only auxin, IBA at various concentrations. The highest root formation (8 / shoot) was achieved on the medium supplemented with 1.5 mg/L. After 4 weeks of cultivation, the plantlets with an extensive root system were transplanted in pots with a soil mixture of vermiculite and fine sand. Transferred to field, about 75% of the plantlets survived.

  • PDF

Leaf Growth and Forage Yield in Three Cultivars of Orchardgrass ( Dactylis glomerata L. ) over Cutting Stages I. Seasonal regrowth and anatomy of leaves (오차드그라스 ( Dactylis glomerata L. ) 품종들의 예취에 따른 엽생장과 수량형성 I. 오차드그라스 품종들의 계절별 엽의 재생과 조직형성)

  • 김훈기;이호진
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.3
    • /
    • pp.104-109
    • /
    • 1988
  • A field experiment was conducted in order to investigate the seasonal changes of leaf growth and related characteristics in three cultivars of orchardgrass; Potomac, Kay and Sumas. The results were summarized as follows: 1. Leaf elongation was increased in a nearly linear phase during first and third cutting stages. It was increased slowly in early 10 days to 15 days after cutting and increased rapidly thereafter during the rest cutting stages. In cultivars, Potomac was showed hlgher leaf elongation than other cultivars during all cutting stages. There was no difference of leaf width within cutting stages, but the leaf width of fall regrowth was narrow. Sumas had relatively short and wide leaves. 2. Leaf dry weight and leaf area in first cutting stage were larger than others. Leaf area was increased rapidly from 15 days after cutting and leaf $we$ was increased rapidly from 20 days over all cutting stages. The increase in leaf area and dry weight were slow down after 30 days. 3. Number of epidermal cells was increased rapidly after cutting and the rate of increase was slow down after 30 days. In a cross section of leaf tissue, the part of mesophyll was occupied with about 60% of total area and larger area than other tissues. Leaf tissue had a large vacancy at early growth period after harvest and was filled gradually with mesophyll. This result was related to the increase of leaf dry matter.

  • PDF

A comparative study of early leaf development in the Viola albida complex

  • CHOI, Yong Kuk;WHANG, Sung Soo
    • Korean Journal of Plant Taxonomy
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Early leaves within the Viola albida complex were investigated by scanning electron microscopy in order to determine the morphological segments during morphogenesis. The early leaf development of V. albida var. albida could be morphologically divided into the eight stages in the following order: I, the initiation of shoot germination; II, the conical growth directionally of the leaf; III, the adaxial and abaxial formation of the leaf; IV, the initiation of the stipule; V, the formation of a transitional zone between the leaf blade and petiole; VI, the expansion of the upper part of the leaf blade; VII, the formation of almost all parts of the early leaf; VIII, the early simple leaf. Viola albida var. takahashii differs from V. albida var. albida by additional stages, i.e., V-1, the initiation of the first lateral lobe at the both lateral parts of the leaf after the stage V and an early lobed leaf. Viola albida var. chaerophylloides is also distinguished from two taxa by two developmental features, V-2, the initiation of a second lateral lobe below of the first lateral lobe, and an early palmately compound leaf. These findings suggest that the Viola albida complex would be in the process of peramorphosis, showing developmental changes in a chain of events, leading to a different leaf shape. These data would also be useful for isolating genes that give rise to different leaf morphogenesis outcomes among the taxa in the Viola albida complex.

First Report of Leaf Spot in Fischer's Ragwort Caused by Didymella ligulariae

  • Gyo-Bin Lee;Hong-Sik Shim;Weon-Dae Cho;Wan-Gyu Kim
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.60-63
    • /
    • 2023
  • During disease surveys from 2019 to 2021, the authors frequently encountered leaf spot symptoms on Fischer's ragwort plants growing at fields at six locations of Gangwon Province, Korea. The symptoms displayed brown to dark brown, circular or irregular spots on the plant leaves. The disease surveys at the six locations revealed 1-90% of diseased leaves of the plants. Phoma sp. was dominantly isolated from the diseased leaf lesions. Seven single-spore isolates of the fungus were selected and identified as Didymella ligulariae by investigation of their cultural, morphological, and molecular characteristics. Artificial inoculation test to Fischer's ragwort leaves was conducted with three isolates of D. ligulariae. The inoculation test revealed that the tested isolates cause leaf spot symptoms in the plants similar to the natural ones. The fungal pathogen has never been reported to cause leaf spot in Fischer's ragwort. Leaf spot of Fischer's ragwort caused by D. ligulariae is first reported in this study.

Leaf Growth and Forage Yield in Three Cultivars of Orchardgrass (Dactylis glomerata L.) over Cutting Stages Ⅰ. Seasonal regrowth and anatomy of leaves (오차드그라스(Dactylis glomerata L.)品種들의 刈取에 따른 葉生長과 收量形成 Ⅰ. 오차드그라스 品種들의 季節別 葉의 再生과 組織形成)

  • Kim, Hoon-Kee;Lee, Ho-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.2
    • /
    • pp.104-109
    • /
    • 1988
  • A field experiment was conducted in order to investigate the seasonal changes of leaf grwoth and related characteristics in three cultivars of orchardgrass; Potomac, Kay and Sumas. The results were summarized as follows: 1. Leaf elongation was increased in a nearly linear phase during first and third cutting stages. It was increased slowly in early 10 days to 15 days after cutting and increased rapidly there-after during the rest cutting stages. In cultivars, Potomac was showed higher leaf elongation than other cultivars during all cutting stages. There was no difference of leaf width within cutting stages, but the leaf width of fall regrwoth was narrow. Sumas had relatively short and wide leaves. 2. Leaf dry weight and leaf area in first cutting stage were larger than others. Leaf area was increased rapidly form 15 days after cutting and leaf weight was increased rapidly from 20 days over all cutting stages. The increase in leaf area and dry weight were slow down after 30 days. 3. Number of epidermal cells was increased rapidly after cutting and the rate of increase was slow down after 30 days. In a cross section of leaf tissue, the part of mesophyll was occupied with about 60% of total area and larger area than other tissue, the part of mesophyll was occupied with about 60% of total area and larger area than other tissues. Leaf tissue had a large vacancy at early growth period after harvest and was filled gradually with mesophyll. This result was related to the increase of leaf dry matter.

  • PDF

First Report of Damping-Off of Ovate-Leaf Atractylodes Caused by Rhizoctonia solani AG-5 in South Korea

  • Hassan, Oliul;Chang, Taehyun
    • Mycobiology
    • /
    • v.49 no.2
    • /
    • pp.196-200
    • /
    • 2021
  • In May to July 2019, ovate-leaf atractylodes seedling and plant with Damping-off symptoms were observed in farmer field at Sangju and Mungyeong, Korea. Seven fungal isolates have been retrieved from diseased root tissue and identified as Rhizoctonia solani AG-5 based on morphological and molecular characteristics. To the best of our knowledge, this is the first report on damping-off of ovate-leaf atractylodes caused by R. solani AG-5 in South Korea.

First Report of Fusarium subglutinans Causing Leaf Spot Disease on Cymbidium Orchids in Korea

  • Han, Kyung-Sook;Park, Jong-Han;Back, Chang-Gi;Park, Mi-Jeong
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.343-346
    • /
    • 2015
  • In 2006~2010, leaf spot symptoms, that is, small, yellow spots that turned into dark brown-to-black lesions surrounded by a yellow halo, were observed on Cymbidium spp. in Gongju, Taean, and Gapyeong in Korea. A Fusarium species was continuously isolated from symptomatic leaves; in pathogenicity testing, isolates caused leaf spot symptoms consisting of sunken, dark brown lesions similar to the original ones. The causal pathogen was identified as Fusarium subglutinans based on morphological and translation elongation factor 1-alpha sequence analyses. This is the first report of F. subglutinans as the cause of leaf spot disease in Cymbidium spp. in Korea.

First Report of Leaf Spot in Water Spinach Caused by Ectophoma multirostrata

  • Gyo-Bin Lee;Hong-Sik Shim;Weon-Dae Cho;Wan-Gyu Kim
    • The Korean Journal of Mycology
    • /
    • v.50 no.4
    • /
    • pp.367-372
    • /
    • 2022
  • Leaf spot symptoms were observed in water spinach (Ipomoea aquatica) plants growing in fields in Ansan and Hongseong, Korea, during disease surveys in 2019 and 2020. The symptoms appeared as brown to dark brown circular or irregular spots on the leaves of the plants. The disease incidence on the plant leaves in the fields investigated at the two locations ranged from 1% to 20%. Five single-spore isolates of Phoma sp. Were obtained from lesions of the diseased leaves. All the isolates were identified as Ectophoma multirostrata based on their cultural and morphological characteristics, as well as molecular analysis. Two isolates of E. multirostrata were tested for pathogenicity on water spinach leaves using artificial inoculation. The tested isolates caused leaf spot symptoms in the inoculated plants. These symptoms were similar to those observed in plants from the investigated fields. To our knowledge, this is the first report of E. multirostrata causing leaf spot in water spinach.