• Title/Summary/Keyword: first deformation plate theory

Search Result 234, Processing Time 0.024 seconds

A Four-Variable First-Order Shear Deformation Theory Considering the Variation of In-plane Rotation of Functionally Graded Plates

  • Park, Minwo;Choi, Dong-Ho
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1265-1283
    • /
    • 2018
  • This paper presents a four-variable first-order shear deformation theory considering in-plane rotation of functionally graded plates. In recent studies, a simple first-order shear deformation theory was developed and extended to functionally graded plates. It has only four variables, separating the deflection into bending and shear parts, while the conventional first-order shear deformation theory has five variables. However, this simple first-order shear deformation theory only provides good predictions for simply supported plates since it does not consider in-plane rotation varying through the thickness of the plates. The present theory also has four variables, but considers the variation of in-plane rotation such that it is able to correctly predict the responses of the plates with any boundary conditions. Analytical solutions are obtained for rectangular plates with various boundary conditions. Comparative studies demonstrate the effects of in-plane rotation and the accuracy of the present theory in predicting the responses of functionally graded plates.

A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate

  • Tounsi, Abdelouahed;Houari, Mohammed Sid Ahmed;Bessaim, Aicha
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.547-565
    • /
    • 2016
  • In this work a new 3-unknown non-polynomial shear deformation theory for the buckling and vibration analyses of functionally graded material (FGM) sandwich plates is presented. The present theory accounts for non-linear in plane displacement and constant transverse displacement through the plate thickness, complies with plate surface boundary conditions, and in this manner a shear correction factor is not required. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modelled with only 3 unknowns as the case of the classical plate theory (CPT) and which is even less than the first order shear deformation theory (FSDT). The plate properties are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton's principle. Analytical solutions of natural frequency and critical buckling load for functionally graded sandwich plates are obtained using the Navier solution. The results obtained for plate with various thickness ratios using the present non-polynomial plate theory are not only substantially more accurate than those obtained using the classical plate theory, but are almost comparable to those obtained using higher order theories with more number of unknown functions.

A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates

  • Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bessaim, Aicha;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.257-276
    • /
    • 2016
  • In this paper, a new simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded (FG) plates is developed. The significant feature of this formulation is that, in addition to including a sinusoidal variation of transverse shear strains through the thickness of the plate, it deals with only three unknowns as the classical plate theory (CPT), instead of five as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The accuracy of the present solutions is verified by comparing the obtained results with those predicted by classical theory, first-order shear deformation theory, and higher-order shear deformation theory. Verification studies show that the proposed theory is not only accurate and simple in solving the bending and free vibration behaviours of FG plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

Deducing thick plate solutions from classical thin plate solutions

  • Wang, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.89-104
    • /
    • 2001
  • This paper reviews the author's work on the development of relationships between solutions of the Kirchhoff (classical thin) plate theory and the Mindlin (first order shear deformation) thick plate theory. The relationships for deflections, stress-resultants, buckling loads and natural frequencies enable one to obtain the Mindlin plate solutions from the well-known Kirchhoff plate solutions for the same problem without much tedious mathematics. Sample thick plate solutions, deduced from the relationships, are presented as benchmark solutions for researchers to use in checking their numerical thick plate solutions.

Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory

  • Besseghier, Abderrahmane;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.601-614
    • /
    • 2017
  • In this work, free vibration analysis of size-dependent functionally graded (FG) nanoplates resting on two-parameter elastic foundation is investigated based on a novel nonlocal refined trigonometric shear deformation theory for the first time. This theory includes undetermined integral variables and contains only four unknowns, with is even less than the conventional first shear deformation theory (FSDT). Mori-Tanaka model is employed to describe gradually distribution of material properties along the plate thickness. Size-dependency of nanosize FG plate is captured via the nonlocal elasticity theory of Eringen. By implementing Hamilton's principle the equations of motion are obtained for a refined four-variable shear deformation plate theory and then solved analytically. To show the accuracy of the present theory, our research results in specific cases are compared with available results in the literature and a good agreement will be demonstrated. Finally, the influence of various parameters such as nonlocal parameter, power law indexes, elastic foundation parameters, aspect ratio, and the thickness ratio on the non-dimensional frequency of rectangular FG nanoscale plates are presented and discussed in detail.

A novel first-order shear deformation theory for laminated composite plates

  • Sadoune, Mohamed;Tounsi, Abdelouahed;Houari, Mohammed Sid Ahmed;Adda Bedia, El Abbes
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.321-338
    • /
    • 2014
  • In the present study, a new simple first-order shear deformation theory is presented for laminated composite plates. Moreover, the number of unknowns of this theory is the least one comparing with the traditional first-order and the other higher-order shear deformation theories. Equations of motion and boundary conditions are derived from Hamilton's principle. Analytical solutions of simply supported antisymmetric cross-ply and angle-ply laminates are obtained and the results are compared with the exact three-dimensional (3D) solutions and those predicted by existing theories. It can be concluded that the proposed theory is accurate and simple in solving the static bending and free vibration behaviors of laminated composite plates.

Critical Buckling Loads of Laminated Composites under Cylindrical Bending (원통형 굽힘을 받는 적층판의 임계좌굴 하중)

  • Lee, Soo-Yong
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.28-36
    • /
    • 2007
  • This paper presents critical buckling loads of laminated composites under cylindrical bending. In-plane displacements are assumed to vary exponentially through plate thickness. The accuracy of this theory is examined for symmetric/antisymmetric cross-ply, angle-ply and unsymmetric laminates under cylindrical bending. Analytical solutions are provided to investigate the effect of transverse shear deformation on critical buckling loads of the laminated plates, and the results are compared with those obtained from the first-order shear deformation plate theory and the classical laminated plate theory.

  • PDF

Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium

  • Kolahchi, Reza;Bidgoli, Ali Mohammad Moniri;Heydari, Mohammad Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1001-1014
    • /
    • 2015
  • Bending analysis of functionally graded (FG) nano-plates is investigated in the present work based on a new sinusoidal shear deformation theory. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. The material properties of nano-plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The size effects are considered based on Eringen's nonlocal theory. Governing equations are derived using energy method and Hamilton's principle. The closed-form solutions of simply supported nano-plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. The effects of different parameters such as nano-plate length and thickness, elastic foundation, orientation of foundation orthtotropy direction and nonlocal parameters are shown in dimensionless displacement of system. It can be found that with increasing nonlocal parameter, the dimensionless displacement of nano-plate increases.

A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate

  • Sekkal, Mohamed;Fahsi, Bouazza;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.389-401
    • /
    • 2017
  • In this work, a new higher shear deformation theory (HSDT) is developed for the free vibration and buckling of functionally graded (FG) sandwich plates. The proposed theory presents a new displacement field by using undetermined integral terms. Only four unknowns are employed in this theory, which is less than the classical first shear deformation theory (FSDT) and others HSDTs. Equations of motion are obtained via Hamilton's principle. The analytical solutions of FG sandwich plates are determined by employing the Navier method. A good agreement between the computed results and the available solutions of existing HSDTs is found to prove the accuracy of the developed theory.

A refined theory with stretching effect for the flexure analysis of laminated composite plates

  • Draiche, Kada;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.671-690
    • /
    • 2016
  • This work presents a static flexure analysis of laminated composite plates by utilizing a higher order shear deformation theory in which the stretching effect is incorporated. The axial displacement field utilizes sinusoidal function in terms of thickness coordinate to consider the transverse shear deformation influence. The cosine function in thickness coordinate is employed in transverse displacement to introduce the influence of transverse normal strain. The highlight of the present method is that, in addition to incorporating the thickness stretching effect (${\varepsilon}_z{\neq}0$), the displacement field is constructed with only 5 unknowns, as against 6 or more in other higher order shear and normal deformation theory. Governing equations of the present theory are determined by employing the principle of virtual work. The closed-form solutions of simply supported cross-ply and angle-ply laminated composite plates have been obtained using Navier solution. The numerical results of present method are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy, higher order shear and normal deformation theory (HSNDT) and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory. It can be concluded that the proposed method is accurate and simple in solving the static bending response of laminated composite plates.