• Title/Summary/Keyword: first arrival picking

Search Result 22, Processing Time 0.018 seconds

A Study in Seismic Signal Analysis for the First Arrival Picking (초동발췌를 위한 탄성파 신호분석연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.131-137
    • /
    • 2007
  • With consideration of the first arrival picking methodology and inherent errors in picking process, I propose, from the computerization point of view, a practical algorithm for picking and error computation. The proposed picking procedure consists of 2-step; 1) picking the first coherent peak or trough events, 2) derive a line which approximates the record in the interval prior to the pick, and set the intercept time of the line as the first break. The length of fitting interval used in experiment, is few samples less than 1/4 width of the arriving wavelet. A quantitative measure of the error involved in first arrival picking is defined as the time length that needed to determine if an event is the first arrival or not. The time length is expressed as a function of frequency bandwidth of the signal and the S/N ratio. For 3 sets of cross-well seismic data, first breaks are picked twice, by manually, and by the proposed method. And at the same time, the error bound for each trace is computed. Experiment results show that good performance of the proposed picking method, and the usefulness of the quantitative error measure in pick-quality evaluation.

Experimental Study on Microseismic Source Location by Dimensional Conditions and Arrival Picking Methods (차원 및 초동발췌방법에 따른 미소진동 음원위치결정 실험연구)

  • Cheon, Dae-Sung;Yu, Jeongmin;Lee, Jang-baek
    • Tunnel and Underground Space
    • /
    • v.29 no.4
    • /
    • pp.243-261
    • /
    • 2019
  • Microseismic monitoring technologies have been recognized for its superiority over traditional methods and are used in domestic and overseas underground mines. However, the complex gangway layout of underground mines in Korea and the mixed structure of excavated space and rock masses make it difficult to estimate the microseismic propagation and to determine the arrival time of microseismic wave. In this paper, experimental studies were carried out to determine the source location according to various arrival picking methods and dimensional conditions. The arrival picking methods used were FTC (First Threshold Cross), Picking window, AIC (Akaike Information Criterion), and 2-D and 3-D source generation experiments were performed, respectively, under the 2-D sensor array. In each experiment, source location algorithm used iterative method and genetic algorithm. The iterative method was effective when the sensor array and source generation were the same dimension, but it was not suitable to apply when the source generation was higher dimension. On the other hand, in case of source location using RCGA, the higher dimensional source location could be determined, but it took longer time to calculate. The accuracy of the arrival picking methods differed according to the source location algorithms, but picking window method showed high accuracy in overall.

The Picking Lead Time for the Picking Batch Size in a Warehouse System (창고시스템에서 인출 배치크기에 대해 인출소요시간)

  • Chang, Suk Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.17-24
    • /
    • 2013
  • This paper is to analyze the picking lead time for picking batch size in a warehouse system and to get minimum picking batch size that is the warehouse system feasible. The warehouse system consists of aisles and racks, which two racks face each other through aisle. The products are picked from the storage locations by batch size. The probability that items are picked in the each row of the rack in the aisle for order picking activity is derived. The picking lead time for picking batch size is the time passed from the first picking location to arrival at starting location in aisle picking all items included in a batch size. The picking lead time for picking batch size in an aisle is analyzed. The picking lead time for picking batch size in the whole warehouse system is obtained. The warehouse system is feasible if all items that customers order are picked from the storage locations for same period. The picking batch size that is the warehouse system feasible is obtained. The problem is analyzed, a solution procedure is developed, and a numerical example is shown to explain the problem.

Investigation of Concrete Flaw Using Seismic First Arrival (탄성파 초동주시를 이용한 콘크리트 구조물의 결함 탐지)

  • 서백수;장선웅;김석현;서정희
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.120-121
    • /
    • 2001
  • The purpose of this study is to investigate concrete flaw using seismic first arrival and various inversion method. Seismic wave propagation was calculated using finite element method in theoretical modelling and tomogram was made using various inversion methods in theoretical and experimental modelling. Five steps of seismic first arrival were selected from FEM results and these data were used to calculate seismic velocity section. According to the results, exact seismic first arrival picking method was proposed and experimental modelling was conducted.

  • PDF

이산 웨이브릿 변환을 이용한 탄성파 주시결정

  • Kim, Jin-Hu;Lee, Sang-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.2
    • /
    • pp.113-120
    • /
    • 2001
  • The discrete wavelet transform(DWT) has potential as a tool for supplying discriminatory attributes with which to distinguish seismic events. The wavelet transform has the great advantage over the Fourier transform in being able to localize changes. In this study, a discrete wavelet transform is applied to seismic traces for identifying seismic events and picking of arrival times for first breaks and S-wave arrivals. The precise determination of arrival times can greatly improve the quality of a number of geophysical studies, such as velocity analysis, refraction seismic survey, seismic tomography, down-hole and cross-hole survey, and sonic logging, etc. provide precise determination of seismic velocities. Tests for picking of P- and S- wave arrival times with the wavelet transform method is conducted with synthetic seismic traces which have or do not have noises. The results show that this picking algorithm can be successfully applied to noisy traces. The first arrival can be precisely determined with the field data, too.

  • PDF

A Source Static Correction Algorithm in Crosswell Tomography (시추공 탄성파 자료의 송신기 정보정 알고리즘)

  • Ji Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.193-198
    • /
    • 2002
  • In crosswell ray tomography, the resultant velocity structure could be affected by source static, first-arrival-time picking errors, convergence to a local minimum due to an inappropriate initial velocity model and etc. In the paper, I propose an algorithm that automatically correct the souce static among these error-prone factors. The algorithm automatically corrects source static using the picking times' differences along the source direction. The application of the algorithm to real data produces a quite satisfactory result. Tile algorithm seems to be helpful for users to apply the souce static correction consistently and to acquire accurate velocity structure.

Development of a GUI Crosswell Seismic Tomography Software on Linux (리눅스용 GUI 시추공 탄성파 토모그래피 프로그램 개발)

  • Sheen Dong-Hoon;Ko Kwang Beom;Park Jae-Woo;Ji Jun;Lee Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.150-156
    • /
    • 2002
  • In this study, a software for crosswell seismic tomography is developed. The software consists of first arrival picking and adjusting module, crosswell traveltime tomography module, and imaging module. This software allows saying the picked first arrival times into the header of seismic data, and using this data directly to the input of crosswell seismic tomography. With an imaging module, velocity structures and ray path can be imaged directly from the output of the tomography module. Because it is developed on the basis of the SU under the Linux and the GUI environment for user, this software can be carried out directly the first arrival picking, inversion and tomogram for crosswell tomography data in the field. Therefore, this software can be improved the applicability of site investigation by tomography method.

Ultrasonic Velocity Measurements of Engineering Plastic Cores by Pulse-echo-overlap Method Using Cross-correlation (다중 반사파 중첩 자료의 상호상관을 이용한 엔지니어링 플라스틱 코어의 초음파속도 측정)

  • Lee, Sang Kyu;Lee, Tae Jong;Kim, Hyoung Chan
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • An automated ultrasonic velocity measurement system adopting pulse-echo-overlap (PEO) method has been constructed, which is known to be a precise and versatile method. It has been applied to velocity measurements for 5 kinds of engineering plastic cores and compared to first arrival picking (FAP) method. Because it needs multiple reflected waves and waves travel at least 4 times longer than FAP, PEO has basic restriction on sample length measurable. Velocities measured by PEO showed slightly lower than that by FAP, which comes from damping and diffusive characteristics of the samples as the wave travels longer distance in PEO. PEO, however, can measure velocities automatically by cross-correlating the first echo to the second or third echo, so that it can exclude the operator-oriented errors. Once measurable, PEO shows essentially higher repeatability and reproducibility than FAP. PEO system can diminish random noises by stacking multiple measurements. If it changes the experimental conditions such as temperature, saturation and so forth, the automated PEO system in this study can be applied to monitoring the velocity changes with respect to the parameter changes.

Development and Application of a Seismic Tomography Software Based on Windows (탄성파 토모그래피 자동화 처리 소프트웨어 개발 및 적용성 검토)

  • Jung, Sang-Won;Ha, Hee-Sang;Ko, Kwang-Beom
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.157-163
    • /
    • 2004
  • In this study, a travel-time tomography software was developed under the MS Windows system and GUI environment for user. The software supports following features: (1) supporting various data input format (2) flexible treatment of shot and receiver coordinate coding (3) flexible first arrival picking and modification (4) easy modification of intermediate tomogram. It is expected that the effort of the user can be minimized in each data processing step.

Study of Seismic Data Processing Method for Tunnel Detection (터널탐사를 위한 탄성파 자료처리법에 관한 연구)

  • Suh, Baek-Soo;Sohn, Kwon-Ik
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.633-642
    • /
    • 2007
  • Traveltime tomogram is generally used for interpretation of seismic tunnel data. In the field data, the first arrival traveltime is less dispersive with increasing source-receiver seperation compared to theoretical model data. So the result of calculation can be serious despite of small errors such as traveltime picking. In this study, amplitude method and error tomogram method are tried to overcome these problems. This method will help the interpretation of the data from the underground tunnel.