• Title/Summary/Keyword: fire-dynamics

Search Result 312, Processing Time 0.021 seconds

Analysis for fire suppression efficiency of intermittent water spray pattern with FDS (FDS를 이용한 교번식 미분무방식의 소화 성능 분석)

  • Jee, Moon-Hak;Lee, Byung-Kon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.200-203
    • /
    • 2008
  • Water mist fire suppression system utilizes the fire suppression features such as cooling of fire source, dilution of ambient oxygen, and shielding of radiation heat with the evaporation of microscopic water droplets. The momentum of water mist is relatively low and the infiltration of water mist to the fire source is not effective. In addition to lower penetration force, the evaporated water vapor is liable to decline to limited portion of fire source due to its light weight and sparse density. On the other hand, the cycling water mist system is expected to improve the penetration force of water mist as well as the dilution coverage capability with the stratified spray characteristics. At this paper we present the analyzed fire suppression capability of intermittent water spray pattern by use of FDS which is computational fire dynamics fire model. We expect this analysis shall be supportive to the development of the prototype of water mist nozzle.

  • PDF

Evaluation of Fire Safety for Road Tunnels in Port Area based on Fire Safety Guidelines (도로터널 화재안전기준 기반 항만 지역 도로터널 화재 안전성 분석)

  • Ha, Yejin;Jeon, Joonho
    • Journal of Institute of Convergence Technology
    • /
    • v.11 no.1
    • /
    • pp.25-28
    • /
    • 2021
  • Recently, the fire safety of road tunnels has been important issues in South Korea. However, proper fire safety regulations has not made for road tunnels. Due to geographical challenges in South Korea, road tunnels should be constructed to secure stable traffic flows. In the Guidelines for Installing and Managing Disaster Prevention Facilities of Road Tunnels (NFSC 603), main target vehicles are passenger cars. This guidelines cannot support big fires from larger vehicles such as cargo, oil trucks. In this study, fire safety for a road tunnel in port area was analyzed with fire dynamics theory under cargo truck fire scenario. Sujunsan road tunnel in Busan city was chosen as a target tunnel, which links between Busan port and highways to increase cargo shipping. The results show the limitations of present guidelines (NFSC 603) for road tunnel from large fire situations.

A Study on the Ventilation Improvement of Diesel Locomotive Engine Load Test Building using Computational Fluid Dynamics (전산유체역학을 이용한 디젤엔진 부하시험장의 환기 개선에 관한 연구)

  • Park Duckshin;Jeong Byungcheol;Cho Youngmin;Park Byunghyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.227-242
    • /
    • 2005
  • The aim of this study is to relieve the poor ventilation problem of the diesel locomotive engine load test building, located in an urban area. This paper evaluates the ventilation performances of the studied load test building based on the temperature measurement experiment and the computational fluid dynamics (CFD) during the engine load test. The temperature rise caused by the radiator blower of the building was turned out to be the main cause of disturbing the thermal conditions of the building. The indoor temperature distributions simulated by Fluent were validated with the temperature measurement results obtained from the studied building. The simulation results indicated that the comfort condition of this building was poor We suggested several remedial changes in the duct structure of this building for the improvement of the comfort conditions. In addition, a prototype drawing combining several improved design options was proposed. and then the simulation of the temperature distribution in the proposed prototype was performed. The result indicated that the indoor thermal condition of this proposed building was improved when compared with that of the current building.

A Simulation Study on Distributions of Smoke and Temperature in Accommdation on Shipboard Fires (선박의 거주구역 화재시 연기거동 및 온도변화에 관한 시뮬레이션 연구)

  • Kim, Won-Ouk;Kim, Jong-Su;Oh, Sae-Gin;Kim, Sung-Hwan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.293-294
    • /
    • 2006
  • This paper aims to simulate by FDS(Fire Dynamics Simulator) the distributions of temperature and smoke on fires in accommodations on boards. The paper focuses on analysis of temperature at fire occurrence and soot density. The purpose of this study is to predict the possibility of safe escape and efficient fire extinguishing method using fire simulation results.

  • PDF

Influences of changes in the Thermal Properties on Pyrolysis of Solid Combustibles (열물성의 변화가 고체 가연물의 열분해에 미치는 영향)

  • Hong, Ter-Ki;Lee, Jong Won;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.41-48
    • /
    • 2017
  • In order to investigate the influence of changes in the thermal properties of solid combustibles on thermal decomposition, a series of solid pyrolysis experiments were performed using a cone calorimeter specified in KS F ISO 5660-1. In the present study, Poly Methyl Methacrylate (PMMA) which does not produce Char during pyrolysis process was used as solid fuel. Results obtained from cone calorimeter experiments were compared to ones obtained from numerical analysis of Fire Dynamics Simulator (FDS) 1D pyrolysis model adopted with thermal properties of solid fuel as input parameters. Comparisons between experimentally calculated and model-predicted mass loss rate were then made to elucidate the effect of changes in the thermal properties on pyrolysis of PMMA.

Effects of Char Produced from Burning Wood Combustibles on Thermal Pyrolysis (목재 가연물의 연소 시 생성되는 탄화가 열분해에 미치는 영향)

  • Hong, Ter-Ki;Ryu, Myung-Ho;Lee, Jong Won;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.7-12
    • /
    • 2019
  • To investigate the influence of the char layer formed during the combustion process on the pyrolysis of wood combustibles, ISO 5660-1 cone calorimetry experiments and Fire dynamics simulator (FDS) simulations were performed, and the results from these two methods were compared. The wood combustible selected as the fuel for this study, Douglas fir, has been widely used for the production of building materials, furniture, etc. The heat release rate (HRR) measured from the cone calorimetry experiment was in good agreement with the result predicted by the FDS simulation. However, the FDS simulation failed to predict the heat released by the smoldering combustion process, due to the absence of the char surface reaction in the model. The FDS simulation results clearly indicate that the char layer formed on the surface of combustibles produces a thermal barrier which prevents heat transfer to the interior, thickening the thermal depth and thus reducing the pyrolysis rate of combustibles.

A Study on the Safety Assessment of Water-based Firefighting Training Center using Fire Dynamics Simulation (FDS를 활용한 수소화 훈련장 안전성 평가에 관한 연구)

  • Doyoeng Park;Junho Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.317-323
    • /
    • 2024
  • According to the section A-VI/3 of the International Convention on Standards of Training, Certification and Watchkeeping for Seafarers (STCW), Water-based firefighting training center is mandatory to obtain onboard certificates. This space, being similar to fire situations on ships requires that safety measures be quantified to ensure occupant safety and establish operational standards. For fire safety evaluation, cases were designed based on the presence or absence of smoke control equipment using Pyrosim based on Fire Dynamics Simulation (FDS). Vector analysis was performed to evaluate flow of smoke and heat. Available safe escape time / required safe escpae time (ASET/RSET) analysis was conducted to evaluate safety by comparing the interpreted numerical results through Pathfinder. During safety evaluation of the current operational condition, the appropriateness of the function of each smoke control equipment was numerically and visually indicated. The emergency situation with dust collector stopped was expressed by each evacuation time and safety margin of 111.2 seconds, suggesting that be used as a standard of evacuation time.

A Study of Heat St Smoke Evacuation Characteristics by the Changing of Operational Method of Tunnel Fan Shaft Ventilation System for Fire on Subway Train Vehicle (지하철 화재시 본선터널 환기시스템에 따른 열 및 연기배출특성)

  • 이동호;유지오
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.62-69
    • /
    • 2003
  • The smoke control system in subway platform is not only using for smoke exhaust facility but also using ventilation system. For this reason, smoke vent effectiveness is depending on its position, ventilating volume capacity and the vent method. In this study, the passenger's evacuation time was calculated for the case of fire on sloped subway train vehicle in subway platform. In order to recommend the mechanical smoke exhaust operation mode, SES (Subway Environmental Simulation) was used to predict the airflow of the inlet and outlet tunnel for the subway station. Fire dynamics Simulator(FDS) was used the SES's velocity boundary conditions to calculate the smoke density and temperature under the condition of fire on stopped subway train vehicle at the platform. We compared smoke density and temperature distributions for each 6 types of smoke exhaust systems to clarify the characteristics of smoke and hot air exhaust effectiveness from the result of fire simulation.

NUMERICAL SIMULATION OF WIND-DRIVEN FIRE FLUMES

  • Kohyu Satoh;Yang, K.T.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.327-334
    • /
    • 1997
  • In many large urban-fire scenarios one of the critical issues is to attempt to protect the lives of fire fighters in helicopters deployed to flying over the fires and also the lives of people trapped in open areas downwind of the fires such as in parks. The strategies of such protection measures depend significantly on our knowledge of the size and extent of such fires as affected by the prevailing winds. In this study, the shape or profile of the fire plume typical of large urban fires, as affected by a steady unidirectional wind with or without imposing a shear flow on the fire plume, has been simulated numerically by a field model. The results show that the simulations provide realistic flame profiles and at least qualitatively, the same flame dynamics when compared to those from the experiments, and that the fire plumes are sensitive to small variations in the asymmetry of the wind shears, including the appearance of swirling flames within the fire plumes.

  • PDF

Numerical analysis to determine fire suppression time for multiple water mist nozzles in a large fire test compartment

  • Ha, Gaghyeon;Shin, Weon Gyu;Lee, Jaiho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1157-1166
    • /
    • 2021
  • In this study, a numerical sensitivity analysis was performed to determine the fire suppression time for a large number of water mist nozzles in a large fire compartment. Fire simulations were performed using FDS (Fire dynamics simulator) 6.5.2 under the same condition as the test scenario 5 of the International Maritime Organization (IMO) 1165 test protocol. The sensitivities of input parameters including cell size, extinguishing coefficient (EC), droplets per second (DPS), and peak heat release rate (HRR) of fuel were investigated in terms of the normalized HRR and temperature distribution in the compartment. A new method of determining the fire suppression time using FDS simulation was developed, based on the concept of the cut-off time by cut-off value (COV) of the heat release rate per unit volume (HRRPUV) and the cooling time by the HRR cooling time criteria value (CTCV). In addition, a method was developed to determine the average EC value for the simulation input, using the cooling time and cut-off time.