• Title/Summary/Keyword: fire safety design

Search Result 677, Processing Time 0.028 seconds

A Study on the Smoke Removal Equipment in Plant Facilities Using Simulation (시뮬레이션을 이용한 플랜트 시설물 제연설비에 관한 연구)

  • Doo Chan Choi;Min Hyeok Yang;MIn Hyeok Ko;Su Min Oh
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.40-46
    • /
    • 2024
  • Purpose: In this study, in order to ensure the evacuation safety of plant facilities, we analyze the relationship between the height of smoke removal boundary walls, the presence or absence of smoke removal equipment, and evacuation safety. Method: Using fire and evacuation simulations, evacuation safety was analyzed through changes in the height of the smoke removal boundary wall, air supply volume and exhaust volume according to vertical dista. Result: In the case of visible drawings, if only 0.6m of boundary wall is used, the time below 5m reaches the shortest, and 1.2m of boundary width is 20% longer than when using smoke removal facilities. In the case of temperature, 1.2m is 20% longer than 0.6m when only the boundary width is used without smoke removal facilities. Conclusion: It was found that increasing the length of the smoke removal boundary wall could affect visibility, and installing a smoke removal facility would affect temperature. Therefore, it is determined that an appropriate smoke removal plan and smoke removal equipment should be installed in consideration of the process characteristics.

Measurement of Flash Point for Binary Mixtures of 2-Butanol, 2,2,4-Trimethylpentane, Methylcyclohexane, and Toluene at 101.3 kPa (2-Butanol, 2,2,4-Trimethylpentane, Methylcyclohexane 그리고 Toluene 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.161-167
    • /
    • 2020
  • For the design of the prevention and mitigation measures in process industries involving flammable substances, reliable safety data are required. An important property used to estimate the risk of fire and explosion for a flammable liquid is the flash point. Flammability is an important factor to consider when developing safe methods for storing and handling solids and liquids. In this study, the flash point data were measured for the binary systems {2-butanol + 2,2,4-trimethylpentane}, {2-butanol + methylcyclohexane} and {2-butanol + toluene} at 101.3 kPa. Experiments were performed according to the standard test method (ASTM D 3278) using a Stanhope-Seta closed cup flash point tester. A minimum flash point behavior was observed in the binary systems as in the many cases for the hydrocarbon and alcohol mixture that were observed. The measured flash points were compared with the predicted values calculated via the following activity coefficient (GE) models: Wilson, Non-Random Two-Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC) models. The predicted data were only adequate for the data determined by the closed-cup test method and may not be appropriate for the data obtained from the open-cup test method because of its deviation from the vapor liquid equilibrium. The predicted results of this work can be used to design safe petrochemical processes, such as the identification of safe storage conditions for non-ideal solutions containing flammable components.

A Voltage Drops Computation Program on Multi-Distributed Random Loads (다중 분산부하 전압강하산정 프로그램)

  • Kang, Cha-Nyeong;Kwon, Sae-Hyuk;Cho, Sung-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.64-70
    • /
    • 2007
  • A voltage drop in the electrical circuit must be unavoidable. The voltage drop in the electrical circuit means a loss of heat. The heat lost would change the characteristics of the insulator and thus, the insulating performance would be towered resulting in electric leakage, electric shock, power failure, fire and other accidents. Hence, an optimized design against the voltage drop in the electrical circuit must be an important factor determining safety and economy of electrical facilities. This study analyzed the effects of voltage drop on the electrical circuit for such low-voltage electrical facilities requiring the public safety foremost and subject to multi-distributed random loads as street lamps, buildings and subway stations, and thereupon, developed an optimized voltage drop computation program to enhance safety and economy of those electrical facilities.

Exploring Occupational and Behavioral Risk Factors for Obesity in Firefighters: A Theoretical Framework and Study Design

  • Choi, Bong-Kyoo;Schnall, Peter;Dobson, Marnie;Israel, Leslie;Landsbergis, Paul;Galassetti, Pietro;Pontello, Andria;Kojaku, Stacey;Baker, Dean
    • Safety and Health at Work
    • /
    • v.2 no.4
    • /
    • pp.301-312
    • /
    • 2011
  • Firefighters and police officers have the third highest prevalence of obesity among 41 male occupational groups in the United States (US). However, few studies have examined the relationship of firefighter working conditions and health behaviors with obesity. This paper presents a theoretical framework describing the relationship between working conditions, health behaviors, and obesity in firefighters. In addition, the paper describes a detailed study plan for exploring the role of occupational and behavioral risk factors in the development of obesity in firefighters enrolled in the Orange County Fire Authority Wellness Fitness Program. The study plan will be described with emphasis on its methodological merits: adopting a participatory action research approach, developing a firefighter-specific work and health questionnaire, conducting both a cross-sectional epidemiological study using the questionnaire and a sub-study to assess the validity of the questionnaire with dietary intake and physical activity measures, and evaluating the strengths and weaknesses of the body mass index as an obesity measure in comparison to skinfold-based percent body fat. The study plan based on a theoretical framework can be an essential first step for establishing effective intervention programs for obesity among professional and voluntary firefighters.

A Study on the Activity and Training Plan of a Field Crew for the Design of Training Scenarios Assuming Chemical Accidents and Terrorism (화학사고·테러를 가정한 훈련 시나리오 설계를 위한 현장 대원의 활동성 분석과 훈련방안에 관한 연구)

  • Kim, Si-Kuk;Choi, Su-Gil;Hong, Sung-chul
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.72-85
    • /
    • 2020
  • This article is a study on the activity of rescue workers for designing simulation training scenarios assuming chemical accidents. On the basis of the complexity of the indoor scene in the case of chemical accidents and terrorism, we designed a 12-step simulation training scenario for two teams to analyze the improvement in firefighters' capabilities. On the basis of activity measurement in the simulation scenario, step 2 of training had the most drops in the maximum heart rate, as follow: N1, from 163 bpm to 153 bpm; N2, from 186 bpm to 151 bpm; N3, from 168 bpm to 162 bpm; and N4, from 166 bpm to 152 bpm. In terms of intensity level in the allowable activity time, it was found that in step 2 both N1 and N2 reduced from Level 5 to Level 3, N3 remained at Level 4, N4 reduced from Level 4 to Level 3, and the maximum allowable activity time increased.

Analysis Study on Fire Performance with Internal Anchored Concrete Filled Steel Tube Columns According to Percent of Steel-Fibers (강섬유 콘크리트 혼입율에 따른 내부앵커형 콘크리트 충전기둥 내화성능에 관한 해석적 연구)

  • Kim, Sun Hee;Yom, Kong Soo;Kim, Yong Hwan;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.23-34
    • /
    • 2016
  • Concrete filled steel tube system has two major advantages. First, the confinement effect of steel tube improves the compressive strength of concrete. Second, the load capacity and deformation capacity of members are improved because concrete restrains local buckling of steel tube. It does, however, involve workability problem of using stud bolts or anchor bolts to provide composite effect for larger cross-sections. While the ribs inside the columns are desirable in terms of compressive behavior, they cause the deterioration in load capacity upon in-plane deformation resulting from thermal deformation. Since the ribs are directly connected with the concrete, the deformation of the ribs accelerates concrete cracking. Thus, it is required to improve the toughness of the concrete to resist the deformation of the ribs. Welding built-up tubular square columns can secure safety in terms of fire resistance if the problem are solved. This study focuses on mixing steel fiber in the concrete to improve the ductility and toughness of the columns. In order to evaluate fire resistance performance, loaded heating test was conducted with 8 specimens. The behavior and thermal deformation capacity of the specimens were analyzed for major variables including load ratio. The reliability of heat transfer and thermal stress analysis model was verified through the comparison of the results between the test and previous study.

A Study on Customized Smart Fire and Security System for one person household (1인 가구를 위한 맞춤형 스마트 화재 및 방범 시스템에 대한 연구)

  • Han, Hoonyoung;Kim, Gyunho;Ju, Minsu;Ko, Dongbeom;Kim, Jungjoon;Park, Jeongmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.295-304
    • /
    • 2019
  • This paper introduces a customized Smart Fire and Crime system for one person households. Recently, the number of one person household has skyrocketed due to the increasing number of one person household and the aging population. As a result, the demand for private security companies for one person household is increasing and smart security systems that are applied with rapidly evolving IoT and sensor technologies are also becoming a major issue. However, despite the increasing trend of one person households, the existing system focuses on multiple households, so that there are disadvantages of the one person households to operate in such a big system which operate separately. Therefore, in this paper, we design and implement a system that provides a personalized safety service for one person household that integrates a security system and a fire monitoring system. This will help prevent criminal activity in places where the police can not reach at a lower cost than using existing private companies, and help monitor the situation of the houses in real time.

A study on an interval of tunnel cross passage considering inclination and internal airflow (터널 내부 기류 변화에 따른 피난연락갱 간격 설정에 관한 연구)

  • Rie, Dong-Ho;Kim, Ha-Young;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2010
  • The escape connecting gallery in a tunnel on a road is one of emergency equipment to ensure safety for passer in the tunnel against the tunnel fire. Government stipulate over 500m tunnel has the cross passage at intervals of less then 250 m. However, this lump estimated interval is generated the concerns of exaggeration and under construction because peculiarity of the tunnel ex. The velocity of the tunnel airflow, an incline, degree of a fire, and innering area are not considered. The study indicate the way to estimate of the cross passage considered an incline and the velocity of the tunnel airflow for efficient application of cross passage on the tunnel design. As a result, in 0.0 m/s and 1.0 m/s of the velocity of the tunnel airflow case, the movement of smoke is influenced by the incline however, in 20 m/s case, it isn't influenced by incline much. According to the velocity of tunnel airflow and the incline, optimum interval of cross passage is not corresponded. Therefore established lump estimate that has 250 m intervals would be changed to estimate of optimum interval of cross passage that considered about the properties of tunnel, the velocity of the tunnel airflow, incline, degree of a fire and innering area of the tunnel.

Design for a Fuse Element of Sub-miniature Fuse with High Breaking Capacity Characteristics (높은 차단용량 특성을 갖는 초소형 미니어처 퓨즈의 가용체 설계)

  • Ahn, Chang Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.131-137
    • /
    • 2017
  • In order to safely protect high over current flowing into the main circuit at short-circuit without any explosion or fire, the enclosed cartridge fuse with a high interrupting capacity should be applied. But this fuse is impossible to be applied to an inner electronic circuit because of a limited space problem result from the miniaturization trend of products. Therefore, it is necessary to apply a sub-miniature fuse with a relatively small size. However the semi-enclosed fuse which is more free for an influx of air than the enclosed cartridge fuse and is possible to protect fuse elements with chemical and physical combination can be adoptable. But it has a limit of implementing the characteristic of a high breaking capacity. For these reasons, the Fe-42wt%Ni fuse elements alloy and fuse-link with less space were designed to increase a breaking capacity of sub-miniature fuse and its safety for fire and explosion was confirmed in this paper.

Case Study of the Longest Roadway Tunnel in Korea, Baehuryeong Tunnel (국내 최장대 양방향 도로터널 설계사례-배후령터널)

  • Lee Seon-Bok;Je Hae-Chan
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.432-440
    • /
    • 2005
  • Baehuryeong tunnel connects Chuncheon with Hwacheon in Kangwon, Korea, This tunnel is a single tunnel with 5,057 m long and two bidirectional lanes which will be extended into low lanes in the future. The estimated construction period of Baehuryeong tunnel is approximately 55 months. This tunnel will become the longest bidirectional roadway tunnel in Korea. Compared to a twin tunnel, a bidirectional single tunnel has two major disadvantages with regard to the ventilation system and ease of escape during fire. For these reasons, a service tunnel and the transverse ventilation system are planned first time in Korea. In case of fire, the tunnel ventilation design aims to maintain a smoke free layer for passenger evacuation. The geology of Baehuryeong tunnel site is mainly composed of gneiss and granite. Baehuryeong fault is a mainly large scale fault which stands vertical and parallels with tunnel direction. The influenced zone of this fault is within 70 m. Baehuryeong tunnel was designed that it was separated with the distance of more than 100 m from Baehuryeong fault for its safety.