• Title/Summary/Keyword: fire resistance steel

Search Result 275, Processing Time 0.027 seconds

Determination of limiting temperatures for H-section and hollow section columns

  • Kwon, In-Kyu;Kwon, Young-Bong
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.309-325
    • /
    • 2012
  • The risk of progressive collapse in steel framed buildings under fire conditions is gradually rising due to the increasing use of combustible materials. The fire resistance of such steel framed buildings is evaluated by fire tests. Recently, the application of performance based fire engineering makes it easier to evaluate the fire resistance owing to various engineering techniques and fire science. The fire resistance of steel structural members can be evaluated by the comparison of the limiting temperatures and maximum temperatures of structural steel members. The limiting temperature is derived at the moment that the failure of structural member results from the rise in temperature and the maximum temperature is calculated by using a heat transfer analysis. To obtain the limiting temperatures for structural steel of grades SS400 and SM490 in Korea, tensile strength tests of coupons at high temperature were conducted. The limiting temperatures obtained by the tensile coupon tests were compared with the limiting temperatures reported in the literature and the results of column fire tests under four types of loading with different load ratios. Simple limiting temperature formulas for SS400 and SM490 steel based on the fire tests of the tensile coupons are proposed. The limiting temperature predictions using the proposed formulas were proven to be conservative in comparison with those obtained from H-section and hollow section column fire tests.

A Numerical Investigation on Restrained High Strength Q460 Steel Beams Including Creep Effect

  • Wang, Weiyong;Zhang, Linbo;He, Pingzhao
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1497-1507
    • /
    • 2018
  • Most of previous studies on fire resistance of restrained steel beams neglected creep effect due to lack of suitable creep model. This paper presents a finite element model (FEM) for accessing the fire resistance of restrained high strength Q460 steel beams by taking high temperature Norton creep model of steel into consideration. The validation of the established model is verified by comparing the axial force and deflection of restrained beams obtained by finite element analysis with test results. In order to explore the creep effect on fire response of restrained Q460 steel beams, the thermal axial force and deflection of the beams are also analyzed excluding creep effect. Results from comparison infer that creep plays a crucial role in fire response of restrained steel beam and neglecting the effect of creep may lead to unsafe design. A set of parametric studies are accomplished by using the calibrated FEM to evaluate the governed factors influencing fire response of restrained Q460 steel beams. The parametric studies indicate that load level, rotational restraint stiffness, span-depth ratio, heating rate and temperature distribution pattern are key factors in determining fire resistance of restrained Q460 steel beam. A simplified design approach to determine the moment capacity of restrained Q460 steel beams is proposed based on the parametric studies by considering creep effect.

Fire resistance of high strength fiber reinforced concrete filled box columns

  • Tang, Chao-Wei
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.611-621
    • /
    • 2017
  • This paper presents an investigation on the fire resistance of high strength fiber reinforced concrete filled box columns (CFBCs) under combined temperature and loading. Two groups of full-size specimens were fabricated. The control group was a steel box filled with high-strength concrete (HSC), while the experimental group consisted of a steel box filled with high strength fiber concrete (HFC) and two steel boxes filled with fiber reinforced concrete. Prior to fire test, a constant compressive load (i.e., load level for fire design) was applied to the column specimens. Thermal load was then applied on the column specimens in form of ISO 834 standard fire curve in a large-scale laboratory furnace until the set experiment termination condition was reached. The test results show that filling fiber concrete can improve the fire resistance of CFBC. Moreover, the configuration of longitudinal reinforcements and transverse stirrups can significantly improve the fire resistance of CFBCs.

Finite element study on composite slab-beam systems under various fire exposures

  • Cirpici, Burak K.;Orhan, Suleyman N.;Kotan, Turkay
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.589-603
    • /
    • 2020
  • This paper presents an investigation of the thermal performance of composite floor slabs with profiled steel decking exposed to fire effects from floor. A detailed finite-element model has been developed by representing the concrete slab with steel decking under of it and steel beam both steel parts protected by intumescent coating. Although this type of floor systems offers a better fire resistance, passive fire protection materials should be applied when a higher fire resistance is desired. Moreover, fire exposed side is so crucial for composite slab systems as the total fire behaviour of the floor system changes dramatically. When the fire attack from steel parts, the temperature rises rapidly resulting in a sudden decrease on the strength of the beam and decking. Herein this paper, the fire attack side is assumed from the face of the concrete floor (top of the concrete assembly). Therefore, the heat is transferred through concrete to the steel decking and reaching finally to the steel beam both protected by intumescent coating. In this work, the numerical model has been established to predict the heat transfer performance including material properties such as thermal conductivity, specific heat and dry film thickness of intumescent coating. The developed numerical model has been divided into different layers to understand the sensitivity of steel temperature to the number of layers of intumescent coating. Results show that the protected composite floors offer a higher fire resistance as the temperature of the steel section remains below 60℃ even after 60-minute Standard (ISO) fire and Fast fire exposure. Obtaining lower temperatures in steel due to the great fire performance of the concrete itself results in lesser reductions of strength and stiffness hence, lesser deflections.

A model for evaluating the fire resistance of contour-protected steel columns

  • Kodur, V.K.R.;Ghani, B.A.;Sultan, M.A.;Lie, T.T.;El-Shayeb, M.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.559-572
    • /
    • 2001
  • A numerical model, in the form of a computer program, for evaluating the fire resistance of insulated wide-flange steel columns is presented. The three stages associated with the thermal and structural analysis in the calculation of fire resistance of columns is explained. The use of the computer program for tracing the response of an insulated steel column from the initial pre-loading stage to collapse, due to fire, is demonstrated. The validity of the numerical model used in the program is established by comparing the predictions from the computer program with results from full-scale fire tests. Details of fire tests carried out on wide-flange steel columns protected with ceramic fibre insulation, together with results, are presented. The computer program can be used to evaluate the fire resistance of protected wide-flange steel columns for any value of the significant parameters, such as load, section dimensions, column length, type of insulation, and thickness of insulation without the necessity of testing.

Structural performance of unprotected concrete-filled steel hollow sections in fire: A review and meta-analysis of available test data

  • Rush, David;Bisby, Luke;Jowsey, Allan;Melandinos, Athan;Lane, Barbara
    • Steel and Composite Structures
    • /
    • v.12 no.4
    • /
    • pp.325-350
    • /
    • 2012
  • Concrete filled steel hollow structural sections (CFSs) are an efficient, sustainable, and attractive option for both ambient temperature and fire resistance design of columns in multi-storey buildings and are becoming increasingly common in modern construction practice around the world. Whilst the design of these sections at ambient temperatures is reasonably well understood, and models to predict the strength and failure modes of these elements at ambient temperatures correlate well with observations from tests, this appears not to be true in the case of fire resistant design. This paper reviews available data from furnace tests on CFS columns and assesses the statistical confidence in available fire resistance design models/approaches used in North America and Europe. This is done using a meta-analysis comparing the available experimental data from large-scale standard fire tests performed around the world against fire resistance predictions from design codes. It is shown that available design approaches carry a very large uncertainty of prediction, suggesting that they fail to properly account for fundamental aspects of the underlying thermal response and/or structural mechanics during fire. Current North American fire resistance design approaches for CFS columns are shown to be considerably less conservative, on average, than those used in Europe.

Fire resistance of high strength concrete filled steel tubular columns under combined temperature and loading

  • Tang, Chao-Wei
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.243-253
    • /
    • 2018
  • In recent years, concrete-filled box or tubular columns have been commonly used in high-rise buildings. However, a number of fire test results show that there are significant differences between high strength concrete (HSC) and normal strength concrete (NSC) after being subjected to high temperatures. Therefore, this paper presents an investigation on the fire resistance of HSC filled steel tubular columns (CFTCs) under combined temperature and loading. Two groups of full-size specimens were fabricated to consider the effect of type of concrete infilling (plain and reinforced) and the load level on the fire resistance of CFTCs. Prior to fire test, a constant compressive load (i.e., load level for fire design) was applied to the column specimens. Thermal load was then applied on the column specimens in form of ISO 834 standard fire curve in a large-scale laboratory furnace until the set experiment termination condition was reached. The results demonstrate that the higher the axial load level, the worse the fire resistance. Moreover, in the bar-reinforced concrete-filled steel tubular columns, the presence of rebars not only decreased the spread of cracks and the sudden loss of strength, but also contributed to the load-carrying capacity of the concrete core.

A Study on the fire-resistance of concrete-filled steel square tube columns without fire protection under constant central axial loads

  • Park, Su-Hee;Choi, Sung-Mo;Chung, Kyung-Soo
    • Steel and Composite Structures
    • /
    • v.8 no.6
    • /
    • pp.491-510
    • /
    • 2008
  • This paper presents a plan and guidelines that were drawn for Korean based research carried out on the fire-resistance of CFT columns. This research was carried out by reviewing the Korean regulations related to the fire-resistance of CFT columns and examining studies which had been made in Korea as well as overseas. The first phase of the study plan was to compare the fire-resistance of square CFT columns without fire protection (obtained through fire-resistance tests and numerical analyses) with estimated values (obtained through fire-resistance design formulas proposed in Korea and overseas). This comparison provided conclusions as outlined below. Fire-resistance tests conducted in this study proved that, when the actual design load is taken into consideration, square CFT columns without fire protection are able to resist a fire for more than one hour. A comparison was made of test and analysis results with the fire-resistance time based on the AIJ code, the AISC design formula and the estimation formula suggested for Korea. The results of this comparison showed that the test and analysis results for specimens SAH1, SAH2-1, SAH2-2 and SAH3 were almost identical with the AIJ code, the AISC design formula and estimation formula. For specimens SAH4 and SAH5, the estimation formula was more conservative than the AIJ code and the AISC design formula. It was necessary to identify the factors that have an influence on the fire-resistance of CFT columns without fire protection and to draw fire-resistance design formulas for these columns. To achieve this, it is proposed that numerical analyses and tests be conducted in order to evaluate the fire-resistance of circular CFT columns, the influence of eccentricity existing as an additional factor and the influence of the slenderness ratio of the columns. It is also suggested that the overall behavior of CFT structures without fire protection within a fire be evaluated through analysis simulation.

A simplified approach for fire-resistance design of steel-concrete composite beams

  • Li, Guo-Qiang;Wang, Wei-Yong
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.295-312
    • /
    • 2013
  • In this paper, a simplified approach based on critical temperature for fire resistance design of steel-concrete composite beams is proposed. The method for determining the critical temperature and fire protection of the composite beams is developed on the basis of load-bearing limit state method employed in current Chinese Technical Code for Fire safety of Steel Structure in Buildings. Parameters affecting the critical temperature of the composite beams are analysed. The results show that at a definite load level, section shape of steel beams, material properties, effective width of concrete slab and concrete property model have little influence on the critical temperature of composite beams. However, the fire duration and depth of concrete slab have significant influence on the critical temperature. The critical temperatures for commonly used composite beams, at various depth of concrete and fire duration, are given to provide a reference for engineers. The validity of the practical approach for predicting the critical temperature of the composite beams is conducted by comparing the prediction of a composite beam with the results from some fire design codes and full scale fire resistance tests on the composite beam.

An Evaluation for the Fire Resistance of Concrete-Filled Steel Square Tube Columns under Constant Axial Loads (일정 축력을 받는 콘크리트충전 각형 강관기둥의 내화성능 평가)

  • Park, Su Hee;Ryoo, Jae Yong;Chung, Kyung Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.703-714
    • /
    • 2007
  • The aim of this research is to evaluate the fire resistance of concrete-filled steel square tube columns (square CFT columns) under constant axial loads by numerical analysis. The authors examined the experimental results on the fire resistance of concrete-filled steel square tube columns without fire protection. As the materials of CFT columns, steel of SPSR 400 grade and concrete of 27.5MPa and 37.8MPa strengths were used. The significant parameters were determined, such as load ratio, cross-sectional dimensions, and concrete strength. Detailed analytical simulations of fire resistance and axial deformation showed good agreement with the experimental observations. Therefore, this numerical analysis exhibited a reasonable estimation of fire resistance of the square CFT column. Results of the numerical parametric studies showed that the fire resistance of the CFT columns increased with the decrease of the concrete strength and the increase of the cross-sectional dimensions about the constant axial load ratio ($N/N_c$).