• Title/Summary/Keyword: fire resistance materials

Search Result 269, Processing Time 0.025 seconds

Fire resistance of Light-weight Ceramic Board for Exterior Fire resistance Material (경량세라믹보드의 외장재 적용을 위한 화재성능평가)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.119-120
    • /
    • 2016
  • This study is about development of inorganic insulation material using by-product materials. The organic material is due to toxic gas emission, when a fire occurs. And it has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. In this study, installed light weight ceramic insulation by concrete structure to evaluation fire resistance.

  • PDF

Safety Evaluation of Fire Resistant Extruded Panel for Partition Wall System

  • Choi, Duck-Jin;Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.586-595
    • /
    • 2012
  • While the extruded cement panel has many advantages compared to drywall, it has limited applicability in buildings due to its low fire resistance. However, an extruded panel in which the fire resistance has been dramatically enhanced through the addition of a-hemihydrate gypsum is expected to become widely applied as a partition wall or interior material for buildings. To ensure its applicability, certain safety requirements for use, such as the leaning load by residents, the impact by indoor articles, and the fire, need to be taken into consideration. The purpose of this study is to review the impact load resistance, horizontal load resistance, and fire resistance as required safety properties for the partition wall and interior materials of the extruded panel that includes a-hemihydrate gypsum. The results of this study show that the impact load resistance of the extruded panel that includes a-hemihydrate gypsum achieves SD grade for industrial buildings, and the horizontal impact load resistance achieves HD grade for public buildings. In addition, it provides fire-resistance for approximately 7 minutes longer than the existing extruded cement panel. Based on this result, it is confirmed the extruded panel incorporating a-hemihydrate gypsum has adequate safety properties for use as partition wall or interior material.

Study on Property Modification with Fire Retardant Content in the Manufacture of Compounds for Cable Sheath (전선피복용 컴파운드의 제조에서 난연제의 첨가량에 따른 물성 변화 연구)

  • Li, Xiangxu;Lee, Sang Bong;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.47-51
    • /
    • 2019
  • The three different polymer compounds were manufactured with the three different fire retardant (silane coated magnesium dihydroxide) contents, 180, 200, 220 phr, for making cable sheath for ship industry. In the research, ethylene-vinylacetate, polyethylene as matrix polymers and ethylene-vinylacetate grafted maleic anhydride as coupling agent were selected for compounding with fire retardant, closslinking agent, plasticizer, and other additives. In the evaluation. ΔT, Mooney viscosity, and tensile strength increased with the content of fire retardant. But it was found that too much fire retardant damaged aging resistance and cold resistance of the polymer compound.

A Study on the Thermal Analysis of Fire-Resistance Cable using FEM (유한요소법을 이용한 내화전선의 열해석에 관한 연구)

  • 오홍석;이상호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.338-343
    • /
    • 2004
  • In general, the insulation and protective sheaths on electrical conductors are made of combustible substances like PVC, natural or synthetic rubbers, and other organic or synthetic materials. When an electrical fire starts due to overheating of conductors/joints or sparking/arcing, the first thing to ignite is usually the insulation on the cables. When the insulation bums, the produced fumes are very toxic. To solve the problem, we have surely need the fire resistance cable that doesn't bum in a high temperature and emit toxic fume for operating a disaster prevention installation. In this paper, we have simulated the thermal analysis for the fire resistance cable according to the values of current in a overload and a short, and the values of outside flame with the fire resistance cable of the L's company product(600 V, FR-8 : Four Core) using the finite element method(Flux2D).

Performance Evaluation of Curtain-Wall Applying Light-weight Inorganic Foam Panel (경량 무기 발포패널을 적용한 커튼월의 성능평가)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.211-212
    • /
    • 2012
  • To prevent energy waste in buildings used heat insulator. Heat insulator materials can be classified inorganic and organic. The organic material is due to toxic gas emission, when a fire occurs. And it has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. Technologies on energy saving and materials used in curtain walls have progressed with increase of high-rise and large buildings. However, there is little study to explain fire resistance performance of the curtain walls. This study focused on evaluation of the physical properties of light-weight inorganic foam panel for using industrial by-products materials and performance evaluation by mock up test.

  • PDF

A Study on the Fire Resistance of Korean Cellulose Insulation (국내 섬유질 단열재의 내화성능에 관한 연구)

  • Kwon, Young-Cheol;Hwang, Jung-Ha;Yu, Hyung-Kyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.10-16
    • /
    • 2008
  • The fire resistance of thermal insulation and interior finishing materials is recently much emphasized after the fire accident at the Icheon Cold Store in January 2008. Three kinds of thermal insulation are used in buildings. They are Organic, Non-organic and cellulosic insulation. Organic insulation such as polystyrene foam board and urethane foam has high thermal resistance but it has no fire resistance. While non-organic insulation such as rockwool and glassfiber has high fire resistance, it has lower thermal resistance than organic insulation. Cellulose insulation is primarily manufactured from recycled newsprint or cardboard using shredders and fiberizers. Despite of its environmental friendliness and high thermal resistivity, its domestic use has not much increased because of the prejudice that paper can easily burn. However, the cellulose insulation as a product is about 80 wt.% cellulosic fiber and 20 wt.% chemicals, most of which are fire retardants such as boric acid and ammonium sulfate. It is required to secure its fire safety for more consumption as a building insulation in Korea. Therefore, this study investigates the fire resistance of Korean cellulose insulation according to the rate of fire retardant and finally presents the optimum rate of fire retardant in cellulose as building insulation. The fire safety test was conducted according to the ASTM C 1485-00. The test results indicate that above 18 wt% of fire retardant is necessary to secure the fire safety of cellulose insulation.

Evaluation of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance (내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 저항성 평가)

  • Won, Jong-Pil;Choi, Seok-Won;Park, Chan-Gi;Park, Hae-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.559-568
    • /
    • 2006
  • The purpose of this study is to evaluate the mechanical performance and fire resistance of wet-mixed high strength sprayed polymer-modified mortar in order to protect tunnel lining system which are in the event of fire disaster. Since the current commercial fire-resistant materials reproduce the low strength issue of mortar, this study aims to provide an enhanced fire-resistant mortar with a proper strength. Normally, a large temperature gradient phenomenon arise in the vicinity of free surfaces which are fully exposed in the event of persistent flame. Thereby, the determination of optimal cover depth of wet-mixed high strength sprayed polymer-mortar(WHSPM) is important for fire-resistance of tunnel lining system. With comparison of current commercial fire-resistance materials and WHSPM, the experimental result of WHSPM shows the better fire-resistant performance than the others. In addition, the cover limitation should be controlled by minimum 4cm depth in order to avoid fire-induced damage.

Determination of limiting temperatures for H-section and hollow section columns

  • Kwon, In-Kyu;Kwon, Young-Bong
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.309-325
    • /
    • 2012
  • The risk of progressive collapse in steel framed buildings under fire conditions is gradually rising due to the increasing use of combustible materials. The fire resistance of such steel framed buildings is evaluated by fire tests. Recently, the application of performance based fire engineering makes it easier to evaluate the fire resistance owing to various engineering techniques and fire science. The fire resistance of steel structural members can be evaluated by the comparison of the limiting temperatures and maximum temperatures of structural steel members. The limiting temperature is derived at the moment that the failure of structural member results from the rise in temperature and the maximum temperature is calculated by using a heat transfer analysis. To obtain the limiting temperatures for structural steel of grades SS400 and SM490 in Korea, tensile strength tests of coupons at high temperature were conducted. The limiting temperatures obtained by the tensile coupon tests were compared with the limiting temperatures reported in the literature and the results of column fire tests under four types of loading with different load ratios. Simple limiting temperature formulas for SS400 and SM490 steel based on the fire tests of the tensile coupons are proposed. The limiting temperature predictions using the proposed formulas were proven to be conservative in comparison with those obtained from H-section and hollow section column fire tests.

Study on the Excellent Heat Resistance Organic-Inorganic Hybrid Flame Retardant (내열성이 우수한 유-무기 하이브리드 방염제에 관한 연구)

  • Cho, Kyeong-Rae;Lee, Sung-Eun;Lee, Chun-Ha;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.67-72
    • /
    • 2016
  • The development of flame retardants aims to prevent the spread of fire and reduce the casualties caused by flammable and toxic gases generated during the combustion of building materials used in the interiors of multi-use facilities. Flame material application provides flame resistance to a silica sol in an organic-inorganic hybrid material by flame retardant adhesive or coating by producing a sol-gel method. The conventional flame retardant materials, non-flame retardant material is applied with Halogen freeway. In particular, the basic physical properties of conventional adhesive coating improves the heat resistance, enhances the durability fire and heat, and expands the halogen free flame retardant of building materials.

High Temperature Properties of Fire Protection Materials Using Fly Ash and Meta-Kaolin (Fly Ash 및 Meta-Kaolin을 활용한 내화성 마감재의 고온특성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Do, Jeong-Yun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.223-231
    • /
    • 2010
  • The serious issue of tall building is to ensure the fire-resistance of high strength concrete. The fire resistant finishing method is necessarily essential in order to satisfy the fire resistance time of 3 h required by the law. The fire resistant finishing method is installed by applying a fire resistant material as a method of shotcrete or a fire resistant board to high strength concrete surface. This method can reduce the temperature increase of the reinforcement embedded in high strength concrete at high temperature due to the installation thickness control. This study is interested in identifying the effectiveness of inorganic alumino-silicate compounds including the inorganic admixture such as fly ash and meta-kaolin as the fire resistant finishing materials through the analysis of fire resistance and components properties at high temperature. The study results show that the fire resistant finishing material composed of fly ash and meta-kaolin has the thermal stability of the slight decrease of compressive strength at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate. Inorganic compounds composed of fly ash and meta-kaolin is evaluated to be very effective as the fire resistance material for finishing to protect the concrete substrate by the reason of those simplicity in both application and manufacture. The additional study about the adhesion in the interface with concrete substrate is necessary for the purpose of the practical application.