• Title/Summary/Keyword: fire resistance materials

Search Result 268, Processing Time 0.037 seconds

Development and Performance of Cementitious Materials for Fire Resistance of Tunnel (터널 내화용 시멘트계 재료의 개발 및 성능 평가)

  • Won, Jong Pil;Choi, Seok Won;Park, Chan Gi;Park, Hae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.265-273
    • /
    • 2006
  • This study aims at evaluation of the fire resistance performance of cementitious materials for fire protection of tunnel. For this purpose, the research procedure was divided into three parts. First, base mix proportion with different material type were determined by fire test. Second, the fire test of cementitious materials for fire resistance were performed on base mix proportions to evaluated their performance. Third, the performance of cementitious materials for fire resistance compare to the target value and existing commercial products. If the performance of developed cemetitious materials for fire resistance were satisfied the target value, this studies were stopped. But, this research return to first process if the performance of cementitious materials for fire resistance are not satisfied the target value. As a result of this study, the spalling did not happen for develop and existing commercial product. Also, developed cementitious materials for fire resistance are shown with excellent compressive strength, flexural strength, and bond strength, because it used a height density aggregate. And developed cementitious materials has sufficient resistance for fire.

Fire Resistant Performance after Application of Repaired Materials for Fire-Damaged Reinforced Concrete Column (화재피해를 입은 철근콘크리트 단주시험체의 보수재료 적용 후 내화성능 평가)

  • Sim, Sang-Rak;Ryu, Dong-Woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.5
    • /
    • pp.147-154
    • /
    • 2020
  • Currently, there are no specific repair methods for RC structures damaged by fire, and repair methods are applied when durability deteriorates due to aging. In addition, a number of recent studies have been reported that have conducted fire resistance assessment of the repair materials themselves, assuming exposure to high-temperature environments such as fires. However, researches that evaluate the fire resistance performance of the repair materials by applying existing repair materials to the actual fire damaged reinforced concrete structures are very rare. Therefore, in this study, a number of existing repair materials were applied to fire-damaged concrete column to compare and evaluate the fire resistance performance with the original cover concrete.

Evaluation of Fire Resistance Using Mechanical Properties at High Temperature for Steel Column Made of Rolled Steels (SS 400) (구조용 압연강(SS 400)의 고온 기계적 특성을 이용한 기둥부재의 내화성능 평가)

  • Kwon, In-Kyu;Shin, Soon-Gi
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.671-677
    • /
    • 2011
  • Steel columns used in steel buildings are inclined to lose their strength when exposed to severe fire conditions, so fire resistance is required in most countries to protect against loss of life and building collapses. In Korea, the fire resistance of columns can be obtained by the fire test defined in KS F 2257-1, 7. The fire resistance of a steel column should be evaluated in terms of the column's conditions, such as various section types (H-section, hollow-section), the column's length and boundary conditions, and whether it is fixed or hinged. However, fire testing of steel columns is usually conducted on one standard-sized H-section over 3,000 mm, and the result is used as the column's fire resistance. This is not a reasonable way to ensure that a building can withstand fire conditions. In this study, to evaluate the possibility of calculating the fire resistance of steel columns with material properties of high tensile strength of SS 400, both load-bearing fire tests and calculation of steel temperatures were carried out. The results of temperature calculation were very similar to those obtained by fire test.

Study on Property Change with a Fire Retardant Content in the Manufacture of Polymer Composites for Cable Sheath

  • Li, Xiang Xu;Lee, Sang Bong;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.118-122
    • /
    • 2019
  • Four different polymer compounds were manufactured to make cable sheaths for the shipping industry. Two kinds of ethylene vinyl acetate (EVA) as the main matrix polymers and EVA-grafted maleic anhydride (EVA-g-MAH) as the coupling agent were selected for compounding with fire retardant, crosslinking agent, filler, plasticizer, and other additives. The properties of the four compounded materials were investigated with different contents of the fire retardant, silanecoated magnesium dihydroxide (S-MDH). In the rheology evaluation, the $t_{60}$ and ${\Delta}T$ values increased with increasing S-MDH contents. On the other hand, the tensile strength decreased with increasing S-MDH content due to a relative decrease in binder polymers. With increasing S-MDH content, fire resistance increased, but cold resistance showed no obvious enhancement due to the polar effect of vinyl acetate in EVA.

An Evaluation of Fire Resistance and Mock-up Test of the Alumino-silicate Fire Resistant Board (알루미노 실리케이트계 내화보드의 내화성능 및 현장적용성 평가)

  • Kim, Doo-Ho;Park, Dong-Cheol;Kim, Woo-Jae;Lee, Sea-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05b
    • /
    • pp.43-47
    • /
    • 2010
  • The use of high-strength concrete has increased for its excellent structural stability as buildings become higher and bigger than ever before in Korea and overseas recently. The functional requirement of building materials has also been bolstered so for the high -performance, high-quality construction materials to be used more extensively. However, the internal structure of the high-strength concrete is very dense so spalling can be caused during fire. The spalling in turn can cause critical structural damages followed by the fatal consequences, demolition of the building. Therefore, ensuring fire safety for high-rise buildings is assumed to be urgent. Alumino-silicate fire resistant board producing technology has been developed in situations that new materials with excellent fire resistance and easy installation has been sought. The alumino-silicate fire resistant board turned out to exhibit not only fire resistance and excellent physical and dynamical characteristics but also excellent onsite applicability and easy process and transportation after completing Mock-up test. Its excellence as a high-performance building materials was proven.

  • PDF

Study on Manufacture and Properties of Polymer Compounds for Cable Sheath (전선피복용 고분자 컴파운드의 제조 및 물성 연구)

  • Li, Xiangxu;Lee, Sang Bong;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.42-47
    • /
    • 2019
  • The four different polymer compounds were manufactured to make cable sheath for ship industry. Two kinds of ethylene-vinyl acetate (EVA) were selected as main matrix polymers for compounding with fire retardant, crosslinking agent, filler, plasticizer, and other additives. The properties of the four compounded materials were investigated with the contents of fire retardant, silane coated aluminum hydroxide (S-ATH). Rheology, Mooney viscosity, and tensile strength increased with S-ATH contents by reinforcing effect. With increasing fire retardant amount, fire resistance increased, but cold resistance didn't show an obvious enhancement due to polar effect of vinyl acetate in EVA.

A Study of Fire-resistance Light-weight Inorganic Foam Material Using Cullet and Fly-ash (유리분말과 플라이애시를 사용한 내화성 경량 무기발포 소재 연구)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.79-81
    • /
    • 2011
  • To prevent energy waste in buildings used heat insulator. Heat insulator materials can be classified inorganic and organic. The organic material is due to toxic gas emission, when a fire occurs. And it has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. This study focused on evaluation of the physical properties and fire-resistance of inorganic foam material for using industrial by-products materials for the applicability of Fire-resistance Light-weight material.

  • PDF

A Study on the Application of Gypsum Board through the Application of Fire Resistance Ceiling Structure (내화천장구조 적용을 통한 석고보드 활용 확대에 관한 연구)

  • Choi, Dong-ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.217-218
    • /
    • 2019
  • Fire resistance ceiling system is the structure of which the ceiling installed under the slave of the structure has the fire resistance performance. Because of having the fire resistance performance, fire resistive coatings on steel beams can be reduced and large span structures can be constructed. So, it have advantages of convenience for construction, shorten for construction time and cost reducing. In foreign country, it is general that one system consisting of slave and ceiling is constructed as a fire resistance system, in these cases, gypsum boards are mostly used as ceiling materials. The purpose of this study was to explain the possibility of expanding the use of gypsum boards by securing fire resistance performance of these ceilings.

  • PDF

Numerical Evaluations of Fire Resistance of Railcar Floor (철도차량 바닥구조물 내화성능 수치 평가)

  • Park, Won-Hee;Lee, Duck-Hee;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2697-2704
    • /
    • 2011
  • Fire resistance of a floor of a railcar is prescribed in the "Guidelines of standard of railcar safety (Minister of Land, Transport and Maritime Affairs, 2010)". A floor of a railcar should retain its fire resistance for 15 or 20 minutes according its risk level. To evaluate fire resistance of the floor materials which are composed of ceramic board or aluminum foam with weight lightening, fire resistance of railcar floor is numerically analyzed.

  • PDF

Efficiency Estimation of Toxicity Free Eire Resistance Cable

  • Yoon, Hun-Ju;Hon, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.34-38
    • /
    • 2002
  • In this paper, efficiency estimation of toxicity fee fire resistance cable experiments was measured smoke density of toxicity free fire resistance polyolefin insulation material and electric field dependence of tree shape in low density polyethylene (LDPE). One of the most serious causes of failure in high-voltage cables, can be an electrical discharge across an internal gab or void in the insulating material. Treeing due to partial discharge is one of the main causes of breakdown in the insulating materials and reduction of the insulation life. Therefore the necessity for establishing a method to diagnose the aging of insulation materials and to predict the breakdown of insulation and research of the fire resistance character has become important. First, we have studied on electric field dependence of tree shape in LDPE about treeing phenomena occurring on the high electrical field. Second, the measurement method is the attenuation quantity of irradiation by smoke accumulating with in a closed chamber due to non-flaming heat decomposition and flaming combustion. A main cause of fire-growth and generating toxic gas when, it bums, should be dealt with great care in life. safety design. The fire gases were occurred carbon monoxide and decomposition than in polyolefin due to incomplete combustion of PVC, which has high content of carbon in chemical compound.