• 제목/요약/키워드: fire extinguishing mechanisms

검색결과 8건 처리시간 0.019초

Extinguishment of Liquid Fuel Fire by Water Mist Containing Additives

  • Park, Jae-Man;Won, Jung-Il;Shin, Chang-Sub
    • International Journal of Safety
    • /
    • 제4권2호
    • /
    • pp.24-29
    • /
    • 2005
  • An experimental study was presented for extinguishing characteristics of liquid fuel fire by water mist($Dv_{0.99}{\leq}200{\mu}m$) containing potassium acetate and sodium acetate trihydrate. To evaluate the extinguishing performance of water mist containing additives, the evaporation characteristics of a water droplet on a heated surface was examined. The evaporation process was recorded by a charge-coupled-device camera. Also, small-scale extinguishing tests were conducted for n-heptane pool fire in ventilated space. During the experiments, flame temperatures were measured, and concentrations of oxygen and carbon monoxide were analyzed by a combustion gas analyzer. The average evaporation rate of water droplet containing additives was lower than that of pure water at a given surface temperature and decreased with the concentration increase due to the precipitation of salt in the liquid-film and change of surface tension. In case of using additives, the fire extinguishing times was shorter than that of pure water at a given discharge pressure and it was because the momentum of a water droplet containing additives was increased. And also dissociated metal atoms, potassium or sodium, were reacted as a scavenger of the major radical species OH, H which were generated for combustion process. Moreover, at a high pressure of 4 MPa, the fire was extinguished through blowing effect as well as primary extinguishing mechanisms.

알칼리 금속염을 함유한 미분무수의 헵탄 Pool Fire 소화 (Extinguishment of n-heptane Pool Fire by Water Mist Containing Alkali Metal Agent)

  • 박재만;신창섭
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.105-111
    • /
    • 2005
  • An experimental study is performed for extinguishing of n-heptane pool fire by water mist containing potassium acetate as a fire suppression additive. Water mist was generated by a single pressure nozzle in a small-scale chamber. The drop size distribution of water mist was measured using laser diffraction(Malvern particle sizer). The flame temperature, oxygen concentration and carbon monoxide concentration were measured. In case of using additives, the fire extinguishing time was shorter than that of pure water at a given discharge pressure and it was because the momentum of a water droplet containing additives was increased. And also dissociated metal atoms, potassium, were reacted as a scavenger of the major radical species OH, H which were generated for combustion process. Moreover, at a high pressure of 4MPa, the fire was extinguished through blowing effect as well as primary extinguishing mechanisms.

Recent Progress in Methods of Generating Water Mist for Fire Suppression

  • Guangxuan, Liao;Xin, Huang;Beihua, Cong;Jun, Qin;Jianghong, Liu;Xishi, Wang
    • 한국분무공학회지
    • /
    • 제11권4호
    • /
    • pp.251-265
    • /
    • 2006
  • To prevent the ozonosphere from being destroyed by Halon, it is an urgent task to find out Halon replacement. As one of the replacements water mist have showed broad applications by its advantages: little pollution to environment (not destroying the ozone layer or bring green house effect), extinguishing fire quickly, consuming a small quantity of water and having little damage to the protected objects. The methods of generating water mist strongly influence fire suppression effectiveness, which determine the cone angle, drop size distribution, flux uniformity, and momentum of the generating spray. The traditional water mist nozzle included pressure jet nozzles, impingement nozzles and twin-fluid nozzles. All of them have more or less disadvantages for fire suppression. Therefore, many research institutes and corporations are taking up with innovations in mist generation. This article provided some recent studies in State Key Laboratory of Fire Science (SKLFS) of University of Science and Technology of China. SKLFS have investigated new methods of generating water mist (i.e. effervescent atomization and ultrasonic atomization). and self developed a series of nozzles and developed advanced DPIVS (Digital Particle Image Velocimetry and Sizing) technique. Characteristics of water mist (the distribution of droplet sizes, flux density, spray dynamics and cone angle) produced by these nozzles were measured under different conditions (work pressure, nozzle geometry, etc.) using LDV/APV and DPTVS systems. A series of experiments were performed to study the fire suppression effectiveness in different fire scenario (different kindsof the fuel, fire size and ventilation conditions). The fire extinguishing mechanisms of water mist was also discussed.

  • PDF

나트륨 염이 첨가된 미분무수의 액체 pool fire소화특성 (Extinguishing Characteristics of Liquid Pool Eire by Water Mist Containing Sodium Salt)

  • 박재만;신창섭
    • 한국화재소방학회논문지
    • /
    • 제19권3호
    • /
    • pp.13-19
    • /
    • 2005
  • 본 논문에서는 금속염 첨가제를 함유한 미분무수의 소화성능을 연구하고자 아세트산 나트륨을 함유한 단일 액적의 증발속도를 측정하였으며, small-scale 챔버내에서의 헵탄 pool fire에 대한 소화실험을 실시하여, 화염의 온도를 분석함으로써 첨가제에 의한 미분무수 소화특성을 분석하였다. 순수물과 수용액의 증발특성을 비교한 결과 핵비등 영역에서 온도가 높을수록 용해된 첨가제의 석출 및 표면장력의 변화 등 물리적 영향으로 순수물에 비해 수용액의 증발속도가 현저히 느리게 나타났다. 소화실험 결과, 저압에서는 물 액적이 화염의 플림을 뚫지 못하기 때문에 소화는 이루어지지 않았고 단순히 화염의 크기를 작아지게 하였다. 중압에서는 첨가제를 넣었을 경우 액적의 운동량 증가에 따른 물리적 소화효과와 첨가제의 화학적 소화효과가 상승작용을 하여 화염을 억제하였고, 고압에서는 미분무수 시스템의 주요 소화 메커니즘 이외에도 blowing효과에 의해서 화염이 소화되는 것을 관찰할 수 있었다.

변전소 주변압기실 미분무수 소화시스템 성능평가를 위한 화재시나리오 (A Fire Scenario for Application of Water Mist System to an Indoor Power Transformer Room)

  • 최병일;한용식;김명배
    • 한국화재소방학회논문지
    • /
    • 제19권3호
    • /
    • pp.52-57
    • /
    • 2005
  • 미분무수 소화시스템의 소화구조는 분무되는 물의 조건뿐만 아니라 방호대상 공간의 상태에도 의존하기 때문에 일반적인 설계기준을 마련 할 수 없는 실정이다. 따라서 보편적인 성능평가 방법도 있을 수 없기 때문에 방호 대상물과 공간이 결정되면 그에 적절한 성능평가 기준이 마련되어야 한다. 본 연구에서는 변전소 주변압기실에 미분무수 소화시스템을 적용하기 위하여 성능평가 기준을 제안하고자 한다. 이를 위하여 유사 화재사례 조사, 사고 분석, 유사 성능평가기준 분석 등을 수행하였다.

미분무수 분무특성이 액체연료 Pool 화염의 소화에 미치는 영향 (The Effects of Spray Characteristics of Water Mist on the Fire Suppression of Liquid Pool Fire)

  • 오상엽;김호영;정진택
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.215-221
    • /
    • 2003
  • A series of experiments were conducted to study the effectiveness of the extinction of a liquid pool fire with two different water atomizing nozzles. Fire source is small-scale circular stainless steel pan of 120mm in diameter with the fuels of hexane and ethanol. K-type thermocouples were used to measure the flame and fuel temperature along the pool centerline and under fuel surface. A digital camera was used to visualize the process of the fire suppression. The experimental results show that water mist droplet size is $115{\sim}180{\mu}m$ with nozzle A and $130{\sim}190{\mu}m$ with nozzle B. The extinguishing time of pool fire was reduced with the increase of pressure. When water droplets are small, they do not reach the flame base since they may be deflected or evaporated by the fire plume. However, influence of flow rate is more important than droplet size on fire extinction. Among the fire extinction mechanisms, drop of flame temperature is superior to suffocation of O2 concentration.

  • PDF

분무수 분무특성이 액체연료 Pool 화염의 소화에 미치는 영향 (Effects of Spray Characteristics of Water Mist on The Extinction of a Liquid Pool Fire)

  • 김호영;오상엽;정진택
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1591-1599
    • /
    • 2004
  • A series of experiments were conducted to study the effectiveness of the extinction of a liquid pool fire with two different water atomizing nozzles. Fire source is a small-scale circular stainless steel pan of 120mm in diameter with the fuels of hexane and ethanol. K-type thermocouples were used to measure the flame and fuel temperature along the pool centerline and under fuel surface. A digital camera was used to visualize the process of the fire suppression. The experimental results show that water mist droplet size is l15∼180${\mu}{\textrm}{m}$ with nozzle A and 130∼190${\mu}{\textrm}{m}$ with nozzle B. The extinguishing time of pool fire was reduced with the increase of pressure. When water droplets are small, they do not reach the flame base since they may be deflected or evaporated by the fire plume. However, influence of flow rate is more important than droplet size on fire extinction. Among the fire extinction mechanisms, drop of flame temperature is superior to suffocation of $O_2$ concentration.

국소방출방식 개념의 대향류 확산화염에서 CO2 소화효과에 관한 수치해석 연구 (A Numerical Study on the Extinguishing Effects of CO2 in Counterflow Diffusion Flames with the Concept of Local Application System)

  • 문선여;박충화;황철홍;오창보
    • 한국화재소방학회논문지
    • /
    • 제26권4호
    • /
    • pp.55-62
    • /
    • 2012
  • 소화약제의 국소방출방식 개념이 적용될 수 있는 대향류 확산화염을 대상으로 $CO_2$ 소화약제의 소화기구를 재조명하기 위한 연구가 시도되었다. 이를 위해 연료 또는 공기류에 $CO_2$가 첨가된 낮은 총괄신장율의 $CH_4$/air 대향류 확산화염이 상세반응을 이용한 수치해석을 통해 검토되었다. 첨가된 $CO_2$를 포함한 복사 참여 화학종의 복사 열손실을 고려하기 위하여 optically thin model(OTM)이 적용되었다. 주요 결과로서, 공기류에 첨가된 $CO_2$의 소화농도 예측결과는 문헌에 보고된 실험결과를 적절하게 예측하고 있으나, 연료류에 첨가된 경우 다소 과소 예측된 결과를 확인하였다. 소화효과에 대한 정량적 분석을 위하여 가상의 소화약제의 개념이 도입되었다. $CO_2$ 소화효과의 분석을 통해 총괄신장율($a_g$)에 따른 순수 희석효과, 복사 열손실 및 열용량에 의한 열적효과 그리고 $CO_2$의 연쇄반응 억제를 통한 화학적 효과의 정량적 기여도를 구체적으로 확인할 수 있었다.