• Title/Summary/Keyword: fire event

Search Result 342, Processing Time 0.023 seconds

Development of Emergency Exit Guidance Lamps using the Characteristics of Each Sensor in Case of Fire (화재 발생 시 센서별 특성을 이용한 비상구 유도등 개발)

  • Kim, Jong-Kwan;Jeong, Do-Hyeon;Yu, Yong-Woo;Yang, Min-Hyeok;Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1019-1028
    • /
    • 2021
  • Emergency exit guidance lights were designed and manufactured to quickly determine the location of the emergency exit in the event of a fire using a gas sensor, an illumination sensor, a temperature sensor, an Arduino Uno, and a Bluetooth module. This research was designed such that, when a fire breaks out, a red arrow appears as the illuminance value is low and a green arrow as the illuminance value is high to improve visibility when detecting high temperature and smoke. In addition, it is designed to prevent more serious conflagration by applying an alarm sound and text transmission algorithm using a communication module to transmit text messages indicating a 174Hz alarm sound and a fire location to prevent more serious conflagration.

A Study on the Safety of Carbon Manufacturing By-product Gas Emissions (카본제조 부생가스 배출 안전성에 관한 연구)

  • Joo, Jong-Yul;Jeong Phil-Hoon;Kim, Sang-Gil;Sung-Eun, Lee
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.99-106
    • /
    • 2024
  • In the event of an emergency such as facility shutdown during process operation, the by-product gas must be urgently discharged to the vent stack to prevent leakage, fire, and explosion. At this time, the explosion drop value of the released by-product gas is calculated using ISO 10156 formula, which is 27.7 vol%. Therefore, it does not correspond to flammable gas because it is less than 13% of the explosion drop value, which is the standard for flammable gas defined by the Occupational Safety and Health Act, and since the explosion drop value is high, it can be seen that the risk of fire explosion is low even if it is discharged urgently with the vent stock. As a result of calculating the range of explosion hazard sites for hydrogen gas discharged to the Bent Stack according to KS C IEC 60079-10-1, 23 meters were calculated. Since hydrogen is lighter than air, electromechanical devices should not be installed within 23 meters of the upper portion of the Bent Stack, and if it is not possible, an explosion-proof electromechanical device suitable for type 1 of dangerous place should be installed. In addition, the height of the stack should be at least 5 meters so that the diffusion of by-product gas is facilitated in case of emergency discharge, and it should be installed so that there are no obstacles around it.

Experimental Study on Evacuation Efficiency in the Airplane Cabin on Emergency (항공기 비상상황 시 기내 대피 효율성에 관한 실험적 연구)

  • Jung Hyun Yoo;Young Sam Lee;So Jung Na;Jong Hoon Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.128-137
    • /
    • 2024
  • Purpose: This study was conducted to investigate, through experimental methods, the efficiency of passenger movement and evacuation in the event of an emergency situation on an aircraft. Method: The experiment was conducted a total of 4 times, including 3 scenarios. The three situations were evacuation without luggage, evacuation with carry-on baggage, and evacuation with carry-on baggage and carrier. In the experiment, time was measured based on recorded video. Result: The total evacuation time was found to be approximately 1.5 times higher for the evacuation with luggage, and approximately 3.5 times higher for the evacuation with luggage and 3 carriers compared to the evacuation result in a situation where nothing was carried. As a result of applying the evacuation simulation, it was found that there was a difference from the experimental results. In particular, consideration of complex situations such as carrying out and moving carriers is considered to be a situation that requires more technical research. Conclusion: Quantitive data was obtained to determine how carry-on luggage and carrier affect evacuation.

An analysis study for reasonable installation of tunnel fire safety facility (터널 방재설비의 합리적 설치를 위한 분석적 연구)

  • Park, Jin-Ouk;Yoo, Yong-Ho;Park, Byoung-Jik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.243-248
    • /
    • 2015
  • Domestic road and railroad construction have been increasingly growing and for reasons of mitigating traffic congestion, urban plan and refurbishment project, deeper and longer tunnels have been built. The event of fire is the most fatal accident in a tunnel, and it can be very disastrous with a high possibility. In this study, QRA (Quantitative Risk Analysis) which is one of quantitative risk analysis approaches was applied to tunnel fire safety design and the evaluation of QRA cases and the cost comparison of QRA methods were carried out. In addition analysis of risk reduction effect of tunnel fire safety system was conducted using AHP (Analytic Hierarchy Process) and the priority of major factors that could mitigate the risk in tunnel fire was presented. As a result, significant cost reduction effect could be obtained by incorporating QRA and it is expected to design fire safety system rationally. The priority of fire safety system based on risk mitigation effect by fire safety system considering the cost is in order of water pipe, emergency lighting, evacuation passage and smoke control system.

A Numerical Study on the Effects of Meteorological Conditions on Building Fires Using GIS and a CFD Model (GIS와 전산유체역학 모델을 이용한 기상 조건이 건물 화재에 미치는 영향 연구)

  • Mun, Da-Som;Kim, Min-Ji;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.395-408
    • /
    • 2021
  • In this study, we investigated the effects of wind speed and direction on building fires using GIS and a CFD model. We conducted numerical simulations for a fire event that occurred at an apartment in Ulsan on October 8, 2020. For realistic simulations, we used the profiles of wind speeds and directions and temperatures predicted by the local data assimilation and prediction system (LDAPS). First, using the realistic boundary conditions, we conducted two numerical simulations (a control run, CNTL, considered the building fire and the other assumed the same conditions as CNTL except for the building fire). Then, we conducted the additional four simulations with the same conditions as CNTL except for the inflow wind speeds and direction. When the ignition point was located on the windward of the building, strong updraft induced by the fire had a wide impact on the building roof and downwind region. The evacuation floor (15th floor) played a role to spread fire to the downwind wall of the building. The weaker the wind speed, the narrower fire spread around the ignition point, but the higher the flame above the building reaches. When the ignition point was located on the downwind wall of the building, the flame didn't spread to the upwind wall of the building. The results showed that wind speed and direction were important for the flow and temperature (or flame) distribution around a firing building.

A Study on Security Plans At Large-Scale International Event Halls: Focusing on Assessment of Escape Safety of K Stadium for The Incheon Asian Games (대규모 국제행사장의 경호경비계획에 관한 연구: 인천 아시안게임 K경기장의 피난안전성 평가를 중심으로)

  • Park, Nam-Kwun;Lee, Young-Ju;Yoon, Myong-O
    • Korean Security Journal
    • /
    • no.30
    • /
    • pp.7-32
    • /
    • 2012
  • Korea faces The 2014 Incheon Asian Games and 2018 Pyungchang Winter Olympics. It is imperative to hold a safe event for the economic benefits, enhancing Korea's image, social integration, national harmony and unity in order to be evaluated as a successful international event. Furthermore, since the international event tends to draw many spectators, the host country must be ready to accommodate a large number of injured people in the event of an accident or terror attack. As stadiums for international events are where a large number of spectators gather in, a large refuge is essential, when dangerous situations happen. In this study, evacuation simulation was conducted using three scenarios in order to predict escape behaviors of spectators during the large escape by destruction of safety systems of stadiums and assess escape safety. As the result, the following results and proposals were extracted. Firstly, it is considered that dangerous situations during the security of stadiums should be predicted in advance and concrete plans for a large refuge of spectators have to be established to minimize damage. Secondly, it was found that the reduction in evacuation exits has an important impact on evacuation in an emergency situation. It implies that securing escape exits are quite important. Thirdly, there were areas where spectators stayed, due to blocked escape exits, while they were dispersed and concentrated at once. It demonstrates that security plans considering properties of facilities are required to solve these problems.

  • PDF

Consequence Analysis of Gas Explosion in LPG Vessel Retail Store Which is Located around Apartment Complex (LPG 판매소에서 가스 폭발이 주위 아파트에 미치는 영향 평가)

  • Lee Su-Kyung;Bae Young-Bum;Oh Jeong-Gyu
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.48-53
    • /
    • 2006
  • In case of fire and explosion which resulted from LP gas release of LPG vessel retail store, the populated area such as apartment complex is supposed to be damaged either partially or totally. To estimate the damage of LP gas explosion, we conducted quantitative risk analysis procedure as has been recommended by AIChE/CCPS. For incident scenario selection, event tree analysis was proposed. TNT equivalent method, SAFER Trace v.8.0 and probit model were also used for consequence analysis. The various methods and analyses which were performed in this study are presented with the effect zones in the layout.

  • PDF

A New Analytical Algorithm of Timed Net with Probabilities of Choices and Its Application (이벤트의 선택 확률을 고려한 시간 넷의 분석 알고리즘 및 응용)

  • Yim Jae-Geol;Joo Jae-Hun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.4
    • /
    • pp.99-115
    • /
    • 2005
  • For an analysis of the performance of a computer system, the minimum cycle time method has been widely used. The minimum cycle time method is a mathematical technique with which we can find the minimum duration time needed to fire all the transitions at least once and coming back to the Initial marking in a timed net. A timed net is a modified version of a Petri net where a transition is associated with a delay time. In the real world, an event is associated with a probability of occurrence. However, a timed net is not equipped with any facility of specifying probability of event occurrence. Therefore, the minimum cycle time method applied on a timed net can easily overlook probabilities of occurrences of events and yield a wrong result. We are proposing 'Timed Net with Probabilities of Choices' where a transition can be associated with both delay time and a probability of occurrence. We also introduce an algorithm for minimum cycle time analysis on a 'Timed Net with Probabilities of Choices'. As an example of application, we are performing an analysis of the location based service system using 'Timed Net with Probabilities of Choices'.

Crash Discrimination Algorithm with Two Crash Severity Levels Based on Seat-belt Status (안전띠 착용 유무에 근거한 두 단계의 충돌 가혹도 수준을 갖는 충돌 판별 알고리즘)

  • 박서욱;이재협
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.148-156
    • /
    • 2003
  • Many car manufacturers have frequently adopted an aggressive inflator and a lower threshold speed for airbag deployment in order to meet an injury requirement for unbolted occupant at high speed crash test. Consequently, today's occupant safety restraint system has a weakness due to an airbag induced injury at low speed crash event. This paper proposes a new crash algorithm to improve the weakness by suppressing airbag deployment at low speed crash event in case of belted condition. The proposed algorithm consists of two major blocks-crash severity algorithm and deployment logic block. The first block decides crash severity with two levels by means of velocity and crash energy calculation from acceleration signal. The second block implemented by simple AND/OR logic combines the crash severity level and seat belt status information to generate firing commands for airbag and belt pretensioner. Furthermore, it can be extended to adopt additional sensor information from passenger presence detection sensor and safing sensor. A simulation using real crash data for a 1,800cc passenger vehicle has been conducted to verify the performance of proposed algorithm.

Consequence Analysis of Energy Facility(City Gas Pipeline) (에너지시설(도시가스배관)의 사고시 영향 평가)

  • Park Kyo-Shik;Lee Jin-Han;Jo Young-Do;Park Jin-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.1 s.18
    • /
    • pp.10-18
    • /
    • 2003
  • Consequence model has been suggested to evaluate consequence of city gas accident considering actual situation. Through event tree analysis(ETA), probable accidents were summarized and listed. Then release rate was calculated both sonic and subsonic conditions. Among city gas accidents, fire damage is the dominant one and mainly discussed; fatality, burning injury, and damage to building were estimated using the consequence model suggested. With an appropriate conditions, calculating total cost by accident was suggested.

  • PDF