• Title/Summary/Keyword: fire dynamics simulation

Search Result 165, Processing Time 0.019 seconds

LES Studies on the Combustion Instability with Inlet Configurations in a Model Gas Turbine Combustor (모형 가스터빈 연소기의 입구 형상변화에 따른 연소 불안정성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.342-350
    • /
    • 2008
  • The effects of combustion instability on flow structure and flame dynamics with the inlet configurations in a model gas turbine combustor were investigated using large eddy simulation (LES). A G-equation flamelet model was employed to simulate the unsteady flame behaviors. As a result of mean flow field, the change of divergent half angle($\alpha$) at combustor inlet results in variations in the size and shape of the central toroidal recirculation (CTRZ) as well as the flame length by changing corner recirculation zone (CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than those of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is shorter than other cases, while the case of ${\alpha}=30^{\circ}$ yields the longest flame length due to the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it was identified that the case of ${\alpha}=45^{\circ}$ shows the largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, compared to that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons were discussed in detail through the analysis of unsteady phenomena related to recirculation zone and flame surface. Finally the effects of flame-acoustic interaction were evaluated using local Rayleigh parameter.

Analysis of Building Emergency Evacuation Process with Interactions in Human Behaviors (화재 시 재실자 행동의 상호 작용을 고려한 건물 피난 행태 분석)

  • Choi, Minji;Park, Moonseo;Lee, Hyun-Soo;Hwang, Sungjoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.6
    • /
    • pp.49-60
    • /
    • 2013
  • Evacuation process has been considered as one of the most important elements to be managed in public facilities. Although the importance is highlighted through numerous literatures, disaster evacuation planning, particularly fire accidents, faces a number of human behavior related limitations for a similar application to different types of facilities/occupants. To overcome the obstacles including complexity in human behaviors, a number of simulation techniques with limited consideration on human behaviors are utilized to predict foreseeable problems in evacuation process. Therefore, this research aims to propose system dynamics models incorporating human behaviors considering different types of occupants under disaster evacuation events. Analysis on emergent human behaviors such as group forming and interactions under urgent situation are conducted based on the main stream theories in social science field. The results suggest the influences of human behavior factors including cooperative intention, information sharing, and mobility change to evacuation behavior. The implications are expected to provide safety consideration at planning/designing phase of buildings and help facility safety managers for evacuation planning with more realistic management approaches.

Quantitative Risk Assessment for Gas-explosion at Buried Common Utility Tunnel (지하 매설 공동구 내부 가스 폭발에 대한 위험성 평가)

  • Jang, Yuri;Jung, Seungho
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.89-95
    • /
    • 2016
  • Keeping the gas pipelines in the common utility tunnel is useful because it has a lower risk of corrosion than conventional burial, and can prevent from excavating construction. But, explosions in common utility tunnels can cause greater damage from the blast overpressure compared to outdoor explosions, due to nature of the confined environment. Despite this fact, however, research on common utility tunnels has been limited to fire hazard and little has been studied on the dangers of explosions. This study developed scenarios of methane gas explosion caused by gas leak from gas piping within the common utility tunnel followed by unknown ignition; the study then calculated the extent of the impact of the explosion on the facilities above, and suggested the needs for designing additional safety measures. Two scenarios were selected per operating condition of safety devices and the consequence analysis was carried out with FLACS, one of the CFD tools for explosion simulation. The overpressures for all scenarios are substantial enough to completely destroy most of the buildings. In addition, we have provided additional measures to secure safety especially reducing incident frequency.

A Study on the Smoke Removal Equipment in Plant Facilities Using Simulation (시뮬레이션을 이용한 플랜트 시설물 제연설비에 관한 연구)

  • Doo Chan Choi;Min Hyeok Yang;MIn Hyeok Ko;Su Min Oh
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.40-46
    • /
    • 2024
  • Purpose: In this study, in order to ensure the evacuation safety of plant facilities, we analyze the relationship between the height of smoke removal boundary walls, the presence or absence of smoke removal equipment, and evacuation safety. Method: Using fire and evacuation simulations, evacuation safety was analyzed through changes in the height of the smoke removal boundary wall, air supply volume and exhaust volume according to vertical dista. Result: In the case of visible drawings, if only 0.6m of boundary wall is used, the time below 5m reaches the shortest, and 1.2m of boundary width is 20% longer than when using smoke removal facilities. In the case of temperature, 1.2m is 20% longer than 0.6m when only the boundary width is used without smoke removal facilities. Conclusion: It was found that increasing the length of the smoke removal boundary wall could affect visibility, and installing a smoke removal facility would affect temperature. Therefore, it is determined that an appropriate smoke removal plan and smoke removal equipment should be installed in consideration of the process characteristics.

Cellular Automata Simulation System for Emergency Response to the Dispersion of Accidental Chemical Releases (사고로 인한 유해화학물질 누출확산의 대응을 위한 Cellular Automata기반의 시뮬레이션 시스템)

  • Shin, Insup Paul;Kim, Chang Won;Kwak, Dongho;Yoon, En Sup;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.136-143
    • /
    • 2018
  • Cellular automata have been applied to simulations in many fields such as astrophysics, social phenomena, fire spread, and evacuation. Using cellular automata, this study develops a model for consequence analysis of the dispersion of hazardous chemicals, which is required for risk assessments of and emergency responses for frequent chemical accidents. Unlike in cases of detailed plant safety design, real-time accident responses require fast and iterative calculations to reduce the uncertainty of the distribution of damage within the affected area. EPA ALOHA and KORA of National Institute of Chemical Safety have been popular choices for these analyses. However, this study proposes an initiative to supplement the model and code continuously and is different in its development of free software, specialized for small and medium enterprises. Compared to the full-scale computational fluid dynamics (CFD), which requires large amounts of computation time, the relative accuracy loss is compromised, and the convenience of the general user is improved. Using Python open-source libraries as well as meteorological information linkage, it is made possible to expand and update the functions continuously. Users can easily obtain the results by simply inputting the layout of the plant and the materials used. Accuracy is verified against full-scale CFD simulations, and it will be distributed as open source software, supporting GPU-accelerated computing for fast computation.