• Title/Summary/Keyword: fire behaviour

Search Result 102, Processing Time 0.017 seconds

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

A Study on the Comparative Analysis and Utilization of Evacuation Time according to Variation of Modelling of Behavior Modes: Focusing on the Case of Underground Parking Lot (행동모드 변화 모델링에 따른 피난시간 비교분석과 활용방안 연구: 지하 주차장 사례를 중심으로)

  • Gi-gyeong Koo
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.284-292
    • /
    • 2024
  • Purpose: Compared to general fires of the same size, underground parking lot fires are more likely to cause human and property damage and are not easy for firefighters to extinguish fire and save lives. This study attempted to find out how to secure the evacuation safety of parking lot users based on changes in the evacuation simulation behavior mode applied to evaluate the evacuation safety of the object. Method: Simulation for each CASE was performed using the Pathfinder program. Result: it was found that the higher the reference value, the higher the evacuation time, and Behavior showed an increase in time in SFPE mode rather than Steering mode. Priority was able to confirm an increase in time in priority designation rather than non-priority designation. Conclusion: The Required Safe Egress Time (RSET) for evaluating the evacuation safety of underground parking lots and the building evacuation design to ensure evacuation safety should be evaluated and reflected separately from Simulation's Behaviour Mode and Priority.