• Title/Summary/Keyword: finitely generated module

Search Result 76, Processing Time 0.019 seconds

S-COHERENT PROPERTY IN TRIVIAL EXTENSION AND IN AMALGAMATED DUPLICATION

  • Mohamed Chhiti;Salah Eddine Mahdou
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.705-714
    • /
    • 2023
  • Bennis and El Hajoui have defined a (commutative unital) ring R to be S-coherent if each finitely generated ideal of R is a S-finitely presented R-module. Any coherent ring is an S-coherent ring. Several examples of S-coherent rings that are not coherent rings are obtained as byproducts of our study of the transfer of the S-coherent property to trivial ring extensions and amalgamated duplications.

On Two Versions of Cohen's Theorem for Modules

  • Xiaolei Zhang;Wei Qi;Hwankoo Kim
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.29-36
    • /
    • 2023
  • Parkash and Kour obtained a new version of Cohen's theorem for Noetherian modules, which states that a finitely generated R-module M is Noetherian if and only if for every prime ideal 𝔭 of R with Ann(M) ⊆ 𝔭, there exists a finitely generated submodule N𝔭 of M such that 𝔭M ⊆ N𝔭 ⊆ M(𝔭), where M(𝔭) = {x ∈ M | sx ∈ 𝔭M for some s ∈ R \ 𝔭}. In this paper, we generalize the Parkash and Kour version of Cohen's theorem for Noetherian modules to S-Noetherian modules and w-Noetherian modules.

COFINITENESS OF GENERAL LOCAL COHOMOLOGY MODULES FOR SMALL DIMENSIONS

  • Aghapournahr, Moharram;Bahmanpour, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1341-1352
    • /
    • 2016
  • Let R be a commutative Noetherian ring, ${\Phi}$ a system of ideals of R and $I{\in}{\Phi}$. In this paper among other things we prove that if M is finitely generated and $t{\in}\mathbb{N}$ such that the R-module $H^i_{\Phi}(M)$ is $FD_{{\leq}1}$ (or weakly Laskerian) for all i < t, then $H^i_{\Phi}(M)$ is ${\Phi}$-cofinite for all i < t and for any $FD_{{\leq}0}$ (or minimax) submodule N of $H^t_{\Phi}(M)$, the R-modules $Hom_R(R/I,H^t_{\Phi}(M)/N)$ and $Ext^1_R(R/I,H^t_{\Phi}(M)/N)$ are finitely generated. Also it is shown that if cd I = 1 or $dimM/IM{\leq}1$ (e.g., $dim\;R/I{\leq}1$) for all $I{\in}{\Phi}$, then the local cohomology module $H^i_{\Phi}(M)$ is ${\Phi}$-cofinite for all $i{\geq}0$. These generalize the main results of Aghapournahr and Bahmanpour [2], Bahmanpour and Naghipour [6, 7]. Also we study cominimaxness and weakly cofiniteness of local cohomology modules with respect to a system of ideals.

ON THE EXTENSION DIMENSION OF MODULE CATEGORIES

  • Peng, Yeyang;Zhao, Tiwei
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1389-1406
    • /
    • 2020
  • Let Λ be an Artin algebra and mod Λ the category of finitely generated right Λ-modules. We prove that the radical layer length of Λ is an upper bound for the radical layer length of mod Λ. We give an upper bound for the extension dimension of mod Λ in terms of the injective dimension of a certain class of simple right Λ-modules and the radical layer length of DΛ.

A HOMOLOGICAL CHARACTERIZATION OF KRULL DOMAINS

  • Wang, Fang Gui;Zhou, De Chuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.649-657
    • /
    • 2018
  • Let R be a commutative ring. In this paper, the w-projective Basis Lemma for w-projective modules is given. Then it is shown that for a domain, nonzero w-projective ideals and nonzero w-invertible ideals coincide. As an application, it is proved that R is a Krull domain if and only if every submodule of finitely generated projective modules is w-projective.

ON THE REDUCTION OF AN IWASAWA MODULE

  • Oh, Jangheon
    • Korean Journal of Mathematics
    • /
    • v.29 no.2
    • /
    • pp.267-269
    • /
    • 2021
  • A finitely generated torsion module M for ℤp[[T, T2, ⋯ , Td]] is pseudo-null if M/TM is pseudo-null over ℤp[[T2, ⋯ , Td]]. This result is used as a tool to prove the generalized Greenberg's conjecture in certain cases. The converse may not be true. In this paper, we give examples of pseudo-null Iwasawa modules whose reduction are not pseudo-null.

COMINIMAXNESS OF LOCAL COHOMOLOGY MODULES WITH RESPECT TO IDEALS OF DIMENSION ONE

  • Roshan-Shekalgourabi, Hajar
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.211-218
    • /
    • 2018
  • Let R be a commutative Noetherian ring, a be an ideal of R and M be an R-module. It is shown that if $Ext^i_R(R/a,M)$ is minimax for all $i{\leq}{\dim}\;M$, then the R-module $Ext^i_R(N,M)$ is minimax for all $i{\geq}0$ and for any finitely generated R-module N with $Supp_R(N){\subseteq}V(a)$ and dim $N{\leq}1$. As a consequence of this result we obtain that for any a-torsion R-module M that $Ext^i_R(R/a,M)$ is minimax for all $i{\leq}dim$ M, all Bass numbers and all Betti numbers of M are finite. This generalizes [8, Corollary 2.7]. Also, some equivalent conditions for the cominimaxness of local cohomology modules with respect to ideals of dimension at most one are given.

ON A GENERALIZATION OF ⊕-SUPPLEMENTED MODULES

  • Turkmen, Burcu Nisanci;Davvaz, Bijan
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.531-538
    • /
    • 2019
  • We introduce FI-${\oplus}$-supplemented modules as a proper generalization of ${\oplus}$-supplemented modules. We prove that; (1) every finite direct sum of FI-${\oplus}$-supplemented R-modules is an FI-${\oplus}$-supplemented R-module for any ring R ; (2) if every left R-module is FI-${\oplus}$-supplemented over a semilocal ring R, then R is left perfect; (3) if M is a finitely generated torsion-free uniform R-module over a commutative integrally closed domain such that every direct summand of M is FI-${\oplus}$-supplemented, then M is a direct sum of cyclic modules.

IDEALS AND SUBMODULES OF MULTIPLICATION MODULES

  • LEE, SANG CHEOL;KIM, SUNAH;CHUNG, SANG-CHO
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.933-948
    • /
    • 2005
  • Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that N = 1M. Let M be a non-zero multiplication R-module. Then we prove the following: (1) there exists a bijection: N(M)$\bigcap$V(ann$\_{R}$(M))$\rightarrow$Spec$\_{R}$(M) and in particular, there exists a bijection: N(M)$\bigcap$Max(R)$\rightarrow$Max$\_{R}$(M), (2) N(M) $\bigcap$ V(ann$\_{R}$(M)) = Supp(M) $\bigcap$ V(ann$\_{R}$(M)), and (3) for every ideal I of R, The ideal $\theta$(M) = $\sum$$\_{m(Rm :R M) of R has proved useful in studying multiplication modules. We generalize this ideal to prove the following result: Let R be a commutative ring with identity, P $\in$ Spec(R), and M a non-zero R-module satisfying (1) M is a finitely generated multiplication module, (2) PM is a multiplication module, and (3) P$^{n}$M$\neq$P$^{n+1}$ for every positive integer n, then $\bigcap$$^{$\_{n=1}$(P$^{n}$ + ann$\_{R}$(M)) $\in$ V(ann$\_{R}$(M)) = Supp(M) $\subseteq$ N(M).

ON INJECTIVITY AND P-INJECTIVITY, IV

  • Chi Ming, Roger Yue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.223-234
    • /
    • 2003
  • This note contains the following results for a ring A : (1) A is simple Artinian if and only if A is a prime right YJ-injective, right and left V-ring with a maximal right annihilator ; (2) if A is a left quasi-duo ring with Jacobson radical J such that $_{A}$A/J is p-injective, then the ring A/J is strongly regular ; (3) A is von Neumann regular with non-zero socle if and only if A is a left p.p.ring containing a finitely generated p-injective maximal left ideal satisfying the following condition : if e is an idempotent in A, then eA is a minimal right ideal if and only if Ae is a minimal left ideal ; (4) If A is left non-singular, left YJ-injective such that each maximal left ideal of A is either injective or a two-sided ideal of A, then A is either left self-injective regular or strongly regular : (5) A is left continuous regular if and only if A is right p-injective such that for every cyclic left A-module M, $_{A}$M/Z(M) is projective. ((5) remains valid if 《continuous》 is replaced by 《self-injective》 and 《cyclic》 is replaced by 《finitely generated》. Finally, we have the following two equivalent properties for A to be von Neumann regula. : (a) A is left non-singular such that every finitely generated left ideal is the left annihilator of an element of A and every principal right ideal of A is the right annihilator of an element of A ; (b) Change 《left non-singular》 into 《right non-singular》in (a).(a).