• Title/Summary/Keyword: finite volume elements

Search Result 105, Processing Time 0.022 seconds

CAD Interface using Topology Optimization (위상최적설계 결과를 이용한 CAD 인터페이스)

  • Kim, Seong-Hoon;Min, Seung-Jae;Lee, Sang-Hun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.281-289
    • /
    • 2009
  • Topology optimization has been widely used for the optimal structure design for weight reduction and high performance. Since the result of three-dimensional topology optimization is represented by the discrete material distribution in finite elements, it is hard to interpret from a design point of view. In this paper, the method for interpreting three-dimensional topology optimization resuIt into a series of cross-sectional curve representation is proposed and interfaced with the existing CAD system for the practical use. The concept of node density and virtual grid is introduced to transform element density values into grid density and material boundaries in each cross section are identified based on the element volume rate to satisfy the amount of material specified in the original design intent. Design exampIes show that three-dimensional topology result can be converted into a form of curve CAD model and the seamless interface with CAD software can be achieved.

Mechanical Performance Evaluation of Cement Paste with Foaming Agent using FEM Analysis Based on Picture Image (화상 이미지 기반 FEM 해석을 이용한 기포제 혼입 시멘트 페이스트의 역학 성능 평가)

  • Kim, Bo-Seok;Shin, Jun-Ho;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • Concrete is a representative heterogeneous material and mechanical properties of concrete are influenced by various factors. Due to the fact that pores in concrete affect determining compressive strength of concrete, studies which deal with distribution and magnitudes of pores are very important. That way, studies using picture imaging have been emerged. Studies on mechanical performance evaluation of structural lightweight foamed concrete and FEM analysis based on picture image are inadequate because lightweight foamed concrete has been researched for only non-structural. Therefore, in this study, cement paste with foaming agent to evaluate mechanical performance is made, FEM analysis with picture image is conducted and young's modulus of experiment and analysis are compared. In this study, dosage of foaming agent is determined 7 level to check pore distribution and water-binder ratio is determined 20% to progress research about structural light weight foamed concrete. Weight of unit volume is minimum at 0.8% of foaming agent dosage. However, weight of unit volume is increased over 0.8% of foaming agent dosage because of interconnection with independent pores. For FEM analysis, cement paste is photographed to use image analyzer(HF-MA C01). Consequently, the fact that Young's Modulus of experiment and FEM analysis are same is drawn by using OOF(Object Oriented Finite elements).

Interfacial Strain Distribution of a Unidirectional Composite with Randomly Distributed Fibers (불규칙 섬유배열을 가진 일방향 복합재료의 경계면 변형률 분포 해석)

  • Ha Sung-Kyu;Jin Kyo-Kook;Oh Je-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.260-268
    • /
    • 2006
  • The micromechanical approach was used to investigate the interfacial strain distributions of a unidirectional composite under transverse loading in which fibers were usually found to be randomly packed. Representative volume elements (RVE) for the analysis were composed of both regular fiber arrays such as a square array and a hexagonal array, and a random fiber array. The finite element analysis was performed to analyze the normal, tangential and shear strains at the interface. Due to the periodic characteristics of the strain distributions at the interface, the Fourier series approximation with proper coefficients was utilized to evaluate the strain distributions at the interface for the regular and random fiber arrays with respect to fiber volume fractions. From the analysis, it was found that the random arrangement of fibers had a significant influence on the strain distribution at the interface, and the strain distribution in the regular fiber arrays was one of special cases of that in the random fiber array.

Effect of Interfacial Debonding on the Material Properties of Brittle Matrix Composites (취성기지 복합재료의 물성치에 미치는 계면분리의 영향)

  • 염영진;진민철
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.42-49
    • /
    • 2003
  • Brittle matrix composites often have interfacial debonding between the fiber and matrix which may lead to strength and stiffness degradation. The effect of interfacial debonding and fiber volume fraction on the mechanical properties of composite material were studied by using finite element method. Firstly, the modelling of fiber and matrix constituting the composite material was simplified under some assumptions. Traction and displacement continuity conditions were imposed along the boundary of adjacent representative volume elements. In order to obtain the effective material properties of composite material, stiffness constants were inverted. Numerical values of longitudinal moduli in case of perfect bonding were compared with theoretical values obtained by rule of mixtures and yielded consistency. Material properties of composite with large debonding an81e were found to decrease even though the fiber volume fraction increased.

Modeling of unilateral effect in brittle materials by a mesoscopic scale approach

  • Pituba, Jose J.C.;Neto, Eduardo A. Souza
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.735-758
    • /
    • 2015
  • This work deals with unilateral effect of quasi-brittle materials, such as concrete. For this propose, a two-dimensional meso-scale model is presented. The material is considered as a three-phase material consisting of interface zone, matrix and inclusions - each constituent modeled by an appropriate constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes randomly placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements developed here in order to capture the effects of phase debonding and interface crack closure/opening. As an initial approximation, the inclusion is modeled as linear elastic as well as the matrix. Our main goal here is to show a computational homogenization-based approach as an alternative to complex macroscopic constitutive models for the mechanical behavior of the quasi-brittle materials using a finite element procedure within a purely kinematical multi-scale framework. A set of numerical examples, involving the microcracking processes, is provided. It illustrates the performance of the proposed model. In summary, the proposed homogenization-based model is found to be a suitable tool for the identification of macroscopic mechanical behavior of quasi-brittle materials dealing with unilateral effect.

Three Dimensional Finite Element Analysis of Filling Stage in Casting Process Using Adaptive Grid Refinement Technique (3차원 적응 격자 세분화를 이용한 주조 공정의 충전 해석)

  • Kim Ki Don;Jeong Jun Ho;Yang Dong Yol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.568-576
    • /
    • 2005
  • A 3-D finite element model combined with a volume tracking method is presented in this work to simulate the mold filling for casting processes. Especially, the analysis involves an adaptive grid method that is created under a criterion of element categorization of filling states and locations in the total region at each time step. By using an adaptive grid wherein the elements, finer than those in internal and external regions, are distributed at the surface region through refinement and coarsening procedures, a more efficient analysis of transient fluid flow with free surface is achieved. Adaptive grid based on VOF method is developed in tetrahedral element system. Through a 3-D analysis of the benchmark test of the casting process, the efficiency of the proposed adaptive grid method is verified. Developed FE code is applied to a typical industrial part of the casting process such as aluminum road wheel.

Behavior of hybrid concrete beams with waste rubber

  • Al-Azzawi, Adel A.;Saad, Noora;Shakir, Dalia
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.245-253
    • /
    • 2019
  • The studies on the applications of waste materials in concrete have been increased in Iraq since 2003. In this research, rubber wastes that resulting from scrapped tires was added to concrete mix with presence of superplasticizer. The mechanical properties of concrete and workability of concrete mixes were studied. The used rubber were ranging in size from (2-4) mm with addition percentages of (0.1% and 0.2%) by volume of concrete. The results of mechanical properties of concrete show that rubber enhance the ductility, and compressive and tensile strength compared to concrete without it. Also, the flexural behavior of hybrid strength concrete beams (due to using rubber at the bottom or top layer of section) was investigated. The rubber concrete located at bottom layer gives higher values of ultimate loads and deflections compared to the beam with top layer. A similar response to fiber concrete beam (all section contains 0.1% rubber) was recognized. Finite element modeling in three dimensions was carried for the tested beams using ABAQUS software. The ultimate loads and deflection obtained from experimental and finite elements are in good agreements with average difference of 8% in ultimate load and 20% in ultimate deflection.

Finite Element Analysis of Ultra High Performance Fiber Reinforced Concrete 50M Composite Box Girder (초고강도 섬유보강 콘크리트 50M 합성 박스거더의 유한요소해석)

  • Makhbal, Tsas-Orgilmaa;Kim, Do-Hyun;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.100-107
    • /
    • 2018
  • The material and geometrical nonlinear finite elment analysis of UHPFRC 50M composite box girder was carried out. Constitute law in tension and compressive region of UHPFRC and HPC were modeled based on specimen test. The accuracy of nonlinear FEM analysis was verified by the experimental result of UHPFRC 50M composite girder. The UHPFRC 50M segmental composite box girder which has 1.5% steel fiber of volume fraction, 135MPa compressive strength and 18MPa tensile strength was tested. The post-tensioned UHPFRC composite girder consisted of three segment UHPFRC U-girder and High Strength Concrete reinforced slab. The parts of UHPFRC girder were modeled by 8nodes hexahedron elements and reinforcement bars and tendons were built by 2nodes linear elements by Midas FEA software. The constitutive laws of concrete materials were selected Multi-linear model both of tension and compression function under total strain crack model, which was included in classifying of smeared crack model. The nonlinearity of reinforcement elements and tendon was simulated by Von Mises criteria. The nonlinear static analysis was applied by incremental-iteration method with convergence criteria of Newton-Raphson. The validation of numerical analysis was verified by comparison with experimental result and numerical analysis result of load-deflection response, neutral axis coordinate change, and cracking pattern of girder. The load-deflection response was fitted very well with comparison to the experimental result. The finite element analysis is seen to satisfactorily predict flexural behavioral responses of post-tensioned, reinforced UHPFRC composite box girder.

A Study on Flexural Behavior of Precast Prestressed Concrete Hollow Slab Bridge (조립식 PSC 중공슬래브교의 휨거동에 관한 연구)

  • Kim, Ki-Yong;Song, Ha-Won;Kim, Ho-Jin;Byun, Keun-Joo;Kim, Yon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.524-527
    • /
    • 2004
  • Recently, precast concrete products have been increasingly used in the construction of bridges except for special bridges like long-span bridge due to their easy and high-quality construction. Specially the use of precast prestressed concrete hollow box slab bridges is also increased due to the merits in their construction. Thus, an experimental evaluation of flexural behavior of the precast PSC hollow box slab bridges and a development of effective analytical technique for the behavior are necessary. For the development, experimental study on the flexural behavior of the precast bridges up to ultimate states is needed. In this study, two full-scale precast PSC hollow box slab girders are manufactured and full-scale flexural failure tests of the girders subjected to cyclic loading are carried out. For the failure analysis of the girders, the so-called volume control method is applied to finite element analysis of the precast PSC hollow box slab girders discretized using multi-layered shell elements. The analytical results by the volume control method is verified by comparing with test results.

  • PDF

Valveless piezoelectric micro-pump exploiting two sided disk type vibrator (디스크형 진동자의 연동 운동을 이용하는 밸브리스 마이크로 압전 펌프)

  • Oh, Jin-Heon;Lim, Jong-Nam;Jeong, Eui-Hwan;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.159-159
    • /
    • 2009
  • Existence of physical moving parts (ex. check valve) produces several problems (mechanical abrasion, deterioration of reliability, limited temperature performances etc.) in driving pumps. To overcome such problems, we proposed a valveless piezoelectric micro-pump which has new type volume transferring mechanism. The proposed micro-pump has a double faced disk type vibrator that can generate peristaltic motion formed by traveling wave in each surface of a disk. This type of micro-pump is able to apply to a fluid supply system that provides two different kinds of fluid simultaneously. In this paper, we propose a simple and novel design of piezoelectric micro-pump that is peristaltically by piezoelectric actuators and allows the removal of the need for valves of other physically moving parts. The finite elements analysis on the proposed pump model was carried out to verify its operation principle using the commercial analysis software.

  • PDF