• 제목/요약/키워드: finite member element

Search Result 442, Processing Time 0.031 seconds

The Fatigue life evaluation and load history measurement for Bogie frame of locomotive (디젤기관차 대차프레임의 하중이력 측정 및 피로수명평가)

  • Seo, Jung-Won;Kwon, Suck-Jin;Ham, Young-Sam;Kwon, Sung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.378-383
    • /
    • 2008
  • Bogie frame of the locomotive is an important structural member for the support of vehicle loading. A lot of study has been carried out for the prediction of the structural integrity of the bogie frame in experimental and theoretical domains. The objective of this paper is to estimate the structural integrity of the bogie frame. Strength analysis has been performed by finite element analysis. From these analysis, stress concentration areas were investigated. For evaluation of the loading conditions, dynamic stress were measured by using strain gage. It has been found that the stress and strain due to the applied loads were multi-axial condition according to the location of strain gage. The fatigue strength evaluations of the bogie frame are performed to investigate the effect of the multi-axial load through the employment of the critical plane approach.

  • PDF

Moisture Migration of Concrete Members under High Temperature (고온조건에서 콘크리트 부재의 수분이동)

  • Lee, Tae-Gyu;Kim, Hye-Uk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1530-1535
    • /
    • 2009
  • Moisture evaporates, when concrete is exposed to fire, not only at concrete surface but also at inside the concrete to adjust the equilibrium and transfer properties of moisture. The equilibrium properties of moisture are described by means of water vapor sorption isotherms, which illustrate the hysteretical behavior of materials. In this paper, the prediction method of the moisture distribution inside the high strength concrete members under the high temperature is presented. Finite element method is employed to facilitate the moisture diffusion analysis for any position of member. And the moisture diffusivity model of high strength concrete by high temperature is proposed. To demonstrate the validity of this numerical procedure, the prediction by the proposed algorithm is compared with the test result of other researcher. The proposed algorithm shows a good agreement with the experimental results including the vaporization effect inside the concrete.

  • PDF

Inner Evaporative Cooling Wind Power Generator with Non-overlapping Concentrated Windings

  • Li, Wang;Wang, Haifeng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2014
  • As the space of the wind power generator stator end is limited, it is difficult for us to place the inner evaporative cooling system in it. We use the non-overlapping concentrated windings scheme to solve the placing and cooling problem. The characteristic of a 5MW direct-driven permanent magnet generator with non-overlapping concentrated windings were analyzed under no-load, rating-load and short-circuit by (Finite Element Method) FEM for verification of design. We studied the connection methods of the stator windings and designed the end connection member. The heat dissipation of the stator end was simulated by FEM, the result showed that the end cooling could satisfy the wind generator operation needs. These results show that the direct-driven permanent magnet wind power generators with non-overlapping concentrated windings and inner evaporative cooling system can solve the cooling problem of wind power generator, and obtain good performance at the same time.

An Analytical Study on the Bond-Properties of Axial Bars Embedded in Massive Concrete (매시브콘크리트에 배근된 주철근의 부착특성에 관한 해석적 연구)

  • 장일영;이호범;이승훈;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.143-147
    • /
    • 1992
  • Description of the behavior of the R.C structural members fixed on massive concrete is not normally generalization of recognized configuration for regular R.C. design guidanes. This can be due to the complexity of evaluation of internal resistancy and deflection changes of the members subjected to the various external forces. On the base of axially loaded member fixed on footing, however, the estimation of deflection changes due to flexural force shear force and rotational force is to be carried out in ways of specifying the bond characteristics of axial bars embedded in massive concrete. This work is to quantify adhesion of steel-concrete, initial concrete cracking stress near bar rib, maximum bond stress and residual stress in concrete respectively. In addition to quantification of them for particulate behavior, the suggestions of multi-linear bond stress-slip diagram made in carrying out finite element analyses for adhesion failure, examining concrete cracking status and reviewing existing experimental data lead to alternatively constructed relationship between bond stress and slip for a axial bars embedded massive concrete.

  • PDF

Tension Stiffening Effect for Reinforced Concrete Members (철근 콘크리트 부재의 인장강성 효과에 관한 연구)

  • 이봉학;윤경구;홍창우
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.83-93
    • /
    • 1999
  • This paper presents tension stiffening effect of Reinforced concrete members obtained from experimental results on direct tension and bending. From the direct tension test program, crack patterns were investigated with tension softening behaviors of concrete. Tension stiffening effects and losses of strain energy were, also, analyzed from the load-deflection curve with the main experimental variables such as concrete strength, yielding stress and reinforcement ratio of rebar. Tension stiffening effect of RC members increase linearly until the first crack initiate, decrease inversely with number of cracks, and then decrease rapidly when splitting cracks are happened. The tension stiffening effect is shown to be more important at the member of lower reinforcement than that of higher. Therefore, it necessitates to consider the tension stiffening effects at a nonlinear analysis. From the above analysis, a tension stiffening model of concrete is proposed and verified by applying it to bending members. From the numerical analysis by finite element approach, it is shown that the proposed model evaluates a little higher in analyzing at nonlinear region of high strength concrete, but, perform satisfactorily in general.

Early-Age Behavior of Base Restrained RC Walls (철근콘크리트 벽체의 초기재령 거동 해석)

  • 곽효경;하수준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.251-258
    • /
    • 2003
  • The early -age behavior of base restrained reinforced concrete (RC) walls is analyzed using a three-dimensional finite element method in this study. After calculating the temperature and internal relative humidity variations of an RC wall, determination of stresses due to thermal gradients, differential drying shrinkage, and average drying shrinkage is followed, and the relative contribution of these three stress components to the total stress is compared. The mechanical properties of early-age concrete, determined from many experimental studies, are taken into consideration, and a discrete reinforcing steel derived using the equivalent nodal force concept is also used to simulate the cracking behavior of RC walls. In advance, to Predict the crack spacing and maximum crack width in a base restrained RC wall, an analytical model which can simulate the post-cracking behavior of an RC tension member is introduced on the basis of the energy equilibrium before and after cracking of concrete.

  • PDF

Cellular and corrugated cross-sectioned thin-walled steel bridge-piers/columns

  • Ucak, Alper;Tsopelas, Panos
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.355-374
    • /
    • 2006
  • Thin walled steel bridge-piers/columns are vulnerable to damage, when subjected to earthquake excitations. Local buckling, global buckling or interaction between local and global buckling usually is the cause of this damage, which results in significant strength reduction of the member. In this study new innovative design concepts, "thin-walled corrugated steel columns" and "thin-walled cellular steel columns" are presented, which allow the column to undergo large plastic deformations without significant strength reduction; hence dissipate energy under cyclic loading. It is shown that, compared with the conventional designs, circular and stiffened box sections, these new innovative concepts might results in cost-effective designs, with improved buckling and ductility properties. Using a finite element model, that takes the non-linear material properties into consideration, it is shown that the corrugations will act like longitudinal stiffeners that are supporting each other, thus improving the buckling behavior and allowing for reduction of the overall wall thickness of the column.

Compressive Ultimate Strength Analysis of Plates with Initial Imperfections (초기결함(初期缺陷)을 갖는 평판(平板)의 압축최종강도해석(壓縮最終强度解析))

  • J.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.31-37
    • /
    • 1985
  • In ship's structure, deck and bottom plate are main strength member subjected to the inplane load due to longitudinal bending, i.e. tensile and/or compressive load. The deck and bottom plate are subdivided into many plate members by stiffeners and girders longitudinally and transversely. Since the plate members are thin, it is likely to be collapsed under compressive load, and when we consider the local strength of deck and bottom, the plate members play an important role in the longitudinal strength. Therefore the precise analysis of their compressive ultimate strength is required for the optimal design of ship's structures. In this paper, the modified analytical method using the incremental form of principle of virtual displacement is introduced to determine the compressive ultimate load of plate members. The results by the present method is satisfactory, and the present method is more effective and economical than the finite element method.

  • PDF

Strength Evaluation Formulae for Ring-Stiffened Tubular X-Joints (내부 환보강 X형 관이음부의 강도산정식)

  • 조현만;류연선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.61-68
    • /
    • 2002
  • Tubular members have been applied in a wide range of frame structures including offshore structures. For the efficient load flow in tubular-member structures, the joints of tubular members are usually reinforced using internal ring stiffener for the steel tubular joint having a large diameter. The objective of this paper is to numerically assess the behavior of X-joints with an internal ring stiffener, and to evaluate the reinforcement effect of a ring stiffener, and to establish the strength formulae. Nonlinear finite element analysis is used to compute the static strength of axially loaded tubular joints. From the numerical results, internal ring stiffener is found to be efficient in improving static strength of tubular X-joints. Maximum strength ratios are calculated as 1.5~3.5, and the effective dimensions of ring stiffener are found. Regression analyses are performed considering practical size of ring stiffener and strength estimation formulae are proposed.

  • PDF

Path-dependent three-dimensional constitutive laws of reinforced concrete -formulation and experimental verifications-

  • Maekawa, Koichi;Irawan, Paulus;Okamura, Hajime
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.743-754
    • /
    • 1997
  • A three-dimensional constitutive modeling for reinforced concrete is presented for finite element nonlinear analysis of reinforced concrete. The targets of interest to the authors are columns confined by lateral steel hoops, RC thin shells subjected to combined in-plane and out-of-plane actions and massive structures of three-dimensional (3D) extent in shear. The elasto-plastic and continuum fracture law is applied to pre-cracked solid concrete. For post cracking formulation, fixed multi-directional smeared crack model is adopted for RC domains of 3D geometry subjected to monotonic and reversed cyclic actions. The authors propose a new scheme of decomposing stress strain fields into sub-planes on which 2D constitutive laws can be applied. The proposed model for 3D reinforced concrete is experimentally verified in both member and structural levels under cyclic actions.