• Title/Summary/Keyword: finite factorization property

Search Result 2, Processing Time 0.017 seconds

A CHARACTERIZATION OF FINITE FACTORIZATION POSITIVE MONOIDS

  • Polo, Harold
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.669-679
    • /
    • 2022
  • We provide a characterization of the positive monoids (i.e., additive submonoids of the nonnegative real numbers) that satisfy the finite factorization property. As a result, we establish that positive monoids with well-ordered generating sets satisfy the finite factorization property, while positive monoids with co-well-ordered generating sets satisfy this property if and only if they satisfy the bounded factorization property.

PRIME FACTORIZATION OF IDEALS IN COMMUTATIVE RINGS, WITH A FOCUS ON KRULL RINGS

  • Gyu Whan Chang;Jun Seok Oh
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.407-464
    • /
    • 2023
  • Let R be a commutative ring with identity. The structure theorem says that R is a PIR (resp., UFR, general ZPI-ring, π-ring) if and only if R is a finite direct product of PIDs (resp., UFDs, Dedekind domains, π-domains) and special primary rings. All of these four types of integral domains are Krull domains, so motivated by the structure theorem, we study the prime factorization of ideals in a ring that is a finite direct product of Krull domains and special primary rings. Such a ring will be called a general Krull ring. It is known that Krull domains can be characterized by the star operations v or t as follows: An integral domain R is a Krull domain if and only if every nonzero proper principal ideal of R can be written as a finite v- or t-product of prime ideals. However, this is not true for general Krull rings. In this paper, we introduce a new star operation u on R, so that R is a general Krull ring if and only if every proper principal ideal of R can be written as a finite u-product of prime ideals. We also study several ring-theoretic properties of general Krull rings including Kaplansky-type theorem, Mori-Nagata theorem, Nagata rings, and Noetherian property.