• Title/Summary/Keyword: finite element solutions

Search Result 1,073, Processing Time 0.029 seconds

A Study on the Evaluation of elastic buckling strength of Singly Symmetric I-Beams (일축대칭 I형보의 탄성좌굴강도 산정에 관한 연구)

  • Ku, So-Yeun;Ryu, Hyo-Jin;Lim, Nam-Hyoung;Lee, Jin-Ok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.79-82
    • /
    • 2008
  • The elastic critical moment of I-beams subjected to moment is directly affected by the following factors; loading type; loading position with respect to the mid-height of the cross section; end restraint conditions. Most design specifications usually provide buckling solutions derived for uniform moment loading condition and account for variable moment along the unbraced length with a moment gradient correction factor applied to these solutions. In order for the method in the SSRC Guide to be applicable for singly symmetric I-beams, improved moment gradient correction factors were proposed in this study. Finite element buckling analyses of singly symmetric I-beams subjected to transverse loading applied at different heights with respect to the mid-height of the cross section were conducted. Transverse loads consisting of a mid-span point load and a uniformly distributed load were considered in the investigation.

  • PDF

A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates

  • Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.223-240
    • /
    • 2015
  • In this work, a nonlocal quasi-3D trigonometric plate theory for micro/nanoscale plates is proposed. In order to introduce the size influences, the Eringen's nonlocal elasticity theory is utilized. In addition, the theory considers both shear deformation and thickness stretching effects by a trigonometric variation of all displacements within the thickness, and respects the stress-free boundary conditions on the top and bottom surfaces of the plate without considering the shear correction factor. The advantage of this theory is that, in addition to considering the small scale and thickness stretching effects (${\varepsilon}_z{\neq}0$), the displacement field is modelled with only 5 unknowns as the first order shear deformation theory (FSDT). Analytical solutions for vibration of simply supported micro/nanoscale plates are illustrated, and the computed results are compared with the available solutions in the literature and finite element model using ABAQUS software package. The influences of the nonlocal parameter, shear deformation and thickness stretching on the vibration behaviors of the micro/nanoscale plates are examined.

Dynamic displacement tracking of a one-storey frame structure using patch actuator networks: Analytical plate solution and FE validation

  • Huber, Daniel;Krommer, Michael;Irschik, Hans
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.613-632
    • /
    • 2009
  • The present paper is concerned with the design of a proper patch actuator network in order to track a desired displacement of the sidewalls of a one-storey frame structure; both, for the static and the dynamic case. Weights for each patch of the actuator network found in our previous work were based on beam theory; in the present paper a refinement of these weights by modeling the sidewalls of the frame structure as thin plates is presented. For the sake of calculating the refined weights approximate solutions of the plate equations are calculated by an extended Galerkin method. The solutions based on the analytical plate model are compared with three-dimensional Finite Element results computed in the commercially available code ANSYS. The patch actuator network is put into practice by means of four piezoelectric patches attached to each of the two sidewalls of the frame structures, to which electric voltages proportional to the analytically refined patch weights are applied. Analytical and numerical results coincide very well over a broad frequency range.

Comparative Study of Armature Reaction Field Analysis for Tubular Linear Machine with Axially Magnetized Single-sided and Double-sided Permanent Magnet Based on Analytical Field Calculations

  • Shin, Kyung-Hun;Park, Min-Gyu;Cho, Han-Wook;Choi, Jang-Young
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.79-85
    • /
    • 2015
  • This paper presents a comparative study of a Tubular Linear Machine (TLM) with an Axially Magnetized Single-sided Permanent Magnet (AMSPM) and an Axially Magnetized Double-sided Permanent Magnet (AMDPM) based on analytical field calculations. Using a two-dimensional (2-D) polar coordinate system and a magnetic vector potential, analytical solutions for the flux density produced by the stator windings are derived. This technique is significant for the design and control implementation of electromagnetic machines. The field solution is obtained by solving Maxwell's equations in the simplified boundary value problem consisting of the air gap and coil. These analytical solutions are then used to estimate the self and mutual inductances. Two different types of machine are used to verify the validity of these model simplifications, and the analytical results are compared to results obtained using the finite element method (FEM) and experimental measurement.

Analytical solutions for sandwich plates considering permeation effect by 3-D elasticity theory

  • Huo, Ruili;Liu, Weiqing;Wu, Peng;Zhou, Ding
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.127-139
    • /
    • 2017
  • In this paper, an exact analytical solution for simply supported sandwich plate which considers the permeation effect of adhesives is presented. The permeation layer is described as functionally graded material (FGM), the elastic modulus of which is assumed to be graded along the thickness following the exponential law. Based on the exact three-dimensional (3-D) elasticity theory, the solution of stresses and displacements for each layer is derived. By means of the recursive matrix method, the solution can be efficiently obtained for plates with many layers. The present solution obtained can be used as a benchmark to access other simplified solutions. The comparison study indicates that the finite element (FE) solution is close to the present one when the FGM layer in the FE model is divided into a series of homogeneous layers. However, the present method is more efficient than the FE method, with which the mesh division and computation are time-consuming. Moreover, the solution based on Kirchhoff-Love plate theory is greatly different from the present solution for thick plates. The influence of the thickness of the permeation layer on the stress and displacement fields of the sandwich plate is discussed in detail. It is indicated that the permeation layer can effectively relieve the discontinuity stress at the interface.

An alternative evaluation of the LTB behavior of mono-symmetric beam-columns

  • Yilmaz, Tolga;Kirac, Nevzat;Anil, O zgur
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.471-481
    • /
    • 2019
  • Beam-columns are structural members subjected to a combination of axial and bending forces. Lateral-torsional buckling is one of the main failure modes. Beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting as the values of the applied loads reach a limiting state. Lateral-torsional buckling failure occurs suddenly in beam-column elements with a much greater in-plane bending stiffness than torsional or lateral bending stiffness. This study intends to establish a unique convenient closed-form equation that it can be used for calculating critical elastic lateral-torsional buckling load of beam-column in the presence of a known axial load. The presented equation includes first order bending distribution, the position of the loads acting transversely on the beam-column and mono-symmetry property of the section. Effects of axial loads, slenderness and load positions on lateral torsional buckling behavior of beam-columns are investigated. The proposed solutions are compared to finite element simulations where thin-walled shell elements including warping are used. Good agreement between the analytical and the numerical solutions is demonstrated. It is found out that the lateral-torsional buckling load of beam-columns with mono-symmetric sections can be determined by the presented equation and can be safely used in design procedures.

Comparison of Approximation and Rotordynamics Solutions for Design of a High Speed Air Spindle (고속 공기 스핀들 설계를 위한 근사해석과 회전체동역학의 비교)

  • Lee, Jae Hyeok;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.310-316
    • /
    • 2019
  • This paper presents two methods for designing a high-speed air spindle operated over the rotational speed of 50,000 rpm. The first method is an approximate method, which assumes a symmetric spindle shape even though it is not symmetric in reality. The second is an analysis of rotordynamics using beam and solid models. The approximate method can be used to calculate the bearing load capacities, stiffness and damping coefficients, stability of the shaft system, and response of the forced excitation from the unbalanced mass. Designers can use this method to determine the dimensions of the desired spindle at the first stage of the design. The more detailed behavior of the spindle can be calculated using the rotordynamics theory using beam and solid models based on the Finite Element Method. In this paper, a spindle, with two air bearings, one motor at the end, and two air thrust bearings, is newly developed. The solutions from the two rotordynamics theories are compared with the solution obtained using the approximate method. The three calculations are in agreement, and the procedure for the design of a spindle system, supported on the externally pressurized air bearings, ispresented and discussed.

Dynamic analyses for an axially-loaded pile in a transverse-isotropic, fluid-filled, poro-visco-elastic soil underlain by rigid base

  • Zhang, Shiping;Zhang, Junhui;Zeng, Ling;Yu, Cheng;Zheng, Yun
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.53-63
    • /
    • 2022
  • Simplified analytical solutions are developed for the dynamic analyses of an axially loaded pile foundation embedded in a transverse-isotropic, fluid-filled, poro-visco-elastic soil with rigid substratum. The pile is modeled as a viscoelastic Rayleigh-Love rod, while the surrounding soil is regarded as a transversely isotropic, liquid-saturated, viscoelastic, porous medium of which the mechanical behavior is represented by the Boer's poroelastic media model and the fractional derivative model. Upon the separation of variables, the frequency-domain responses for the impedance function of the pile top, and the vertical displacement and the axial force along the pile shaft are gained. Then by virtue of the convolution theorem and the inverse Fourier transform, the time-domain velocity response of the pile head is derived. The presented solutions are validated, compared to the existing solution, the finite element model (FEM) results, and the field test data. Parametric analyses are made to show the effect of the soil anisotropy and the excitation frequency on the pile-soil dynamic responses.

Simplified analytical solution of tunnel cross section under oblique incident SH wave in layered ground

  • Huifang Li;Mi Zhao;Jingqi Huang;Weizhang Liao;Chao Ma
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.65-79
    • /
    • 2023
  • A simplified analytical solution for seismic response of tunnel cross section in horizontally layered ground subjected to oblique incidence of SH wave is deduced in this paper. The proposed analytical solution consists of two main steps: free-field response in layered field and tunnel response. The free field responses of the layered ground are obtained by one-dimensional finite element method in time domain. The tunnel lining is treated as a thick-wall cylinder to calculate the tunnel response, which subject to free field stress. The analytical solutions are verified by comparing with the dynamic numerical results of two-dimensional ground-lining interaction analysis under earthquake in some common situations, which have a good agreement. Then, the appropriate range of the proposed analytical solution is analyzed, considering the height of the layered ground, the wavelength and incident angle of SH wave. Finally, by using the analytical solutions, the effects of the ground material, burial depth of the tunnel, and lining thickness and the slippage effect at the ground-lining interface on the seismic response of tunnels are investigated. The proposed solution could serve as a useful tool for seismic analysis and design of tunnels in layered ground.

Comparison of Stress Intensity Factors for Cylindrical Structure with Circumferential Through-Wall Cracks subjected to Tensile Load (원주방향 관통균열이 존재하는 원통형 구조물의 인장하중에 의한 응력확대계수 비교)

  • Dal Woo Jung;Chang Kyun Oh;Hyun Su Kim;Hyeong Do Kweon;Jun Seok Yang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.101-108
    • /
    • 2021
  • To date, a number of stress intensity factor (SIF) solutions have been proposed for the cylindrical structure with circumferential through-wall cracks. However, each solution has a different format as well as applicable range. It is also known that there is a significant difference in predicted SIF values depending on the shape of the structure and the size of the crack. In this study, the applicability of various SIF solutions was analyzed by comparing the finite element analysis results for the case where a tensile load is applied to the cylindrical structure with circumferential through-wall crack. It is found that the calculated SIF gradually decreases and converges to a certain value with increasing length-to-radius ratio. Therefore, an appropriate length-to-radius ratio should be set in consideration of the dimensions of the actual cylindrical structure. For piping with sufficiently long cylinder, the ASME solution is found to be the most appropriate, and for a short cylinder, the API solution should be applied. On the other hand, the WEC solution requires careful attention to its application.