• Title/Summary/Keyword: finite element numerical analysis

Search Result 4,351, Processing Time 0.03 seconds

Finite element analysis of welding process in consideration of transformation plasticity in welding (용접에서 발생하는 변태소성을 고려한 용접공정의 유한요소 해석)

  • 임세영
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.210-212
    • /
    • 2003
  • Finite element analysis of welding processes, which entail phase evolution, heat transfer and deformation, is considered in this paper. Attention focuses on numerical implementation of the thermo-elastic-plastic constitutive equation proposed by Leblond et al in consideration of the transformation plasticity. Based upon the multiplicative decomposition of deformation gradient, hyperelastic formulation is employed for efficient numerical integration, and the algorithmic consistent moduli for elastic-plastic deformations including transformation plasticity are obtained in the closed form. The convergence behavior of the present implementation is demonstrated via a couple of numerical example.

  • PDF

Numerical Study on Analysis and Design of Tube Hydroforming Process by the FEM (유한요소법에 의한 관재 하이드로포밍 공정 해석 및 설계를 위한 수치적 연구)

  • Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.302-311
    • /
    • 2002
  • A generalized numerical approach based on the finite element method to analysis and design of hydroforming process is proposed in this paper. The special attention is focused on comparison of an implicit and an explicit finite element method widely used for hydroforming simulation. Furthermore, in order to meet the increasing real needs for prediction of forming limit, a ductile fracture criterion combined with finite element method is introduced and then applied to hydroforming process of an automobile lower m Consequently, the numerical analysis and design for hydroforming process presented here will facilitate the development and application of the tube hydrofoniung process to a new level.

Computation of Non-Linear Wave Height Distribution in the Seogwipo Harbor Using Finite Element Method

  • Kim, Nam-Hyeong;Hur, Young-Teck;Young, Yin-Lu
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.32-37
    • /
    • 2003
  • In this paper, finite element method is applied for the numerical analysis of wave height distribution. The mild-slope equation is used as the basic equation. The key of this model is to impose the effect of nonlinear waves. Numerical results are presented and agreed well with the results from experimental measurements and other numerical analysis. The present method to determine wave height distribution can be broadly utilized for the analysis of new harbor and port designs in the future.

Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method

  • Yaylaci, Murat
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.405-414
    • /
    • 2022
  • In this study, the elastic plane problem of a layered composite containing an internal or edge crack perpendicular to its boundaries in its lower layer is examined using numerical analysis. The layered composite consists of two elastic layers having different elastic constants and heights. Two bonded layers rest on a homogeneous elastic half plane and are pressed by a rigid cylindrical stamp. In this context, the Finite Element Method (FEM) based software called ANSYS is used for numerical solutions. The problem is solved under the assumptions that the contacts are frictionless, and the effect of gravity force is neglected. A comparison is made with analytical results in the literature to verify the model created and the results obtained. It was found that the results obtained from analytical formulation were in perfect agreements with the FEM study. The numerical results for the stress-intensity factor (SIF) are obtained for various dimensionless quantities related to the geometric and material parameters. Consequently, the effects of these parameters on the stress-intensity factor are discussed. If the FEM analysis is used correctly, it can be an efficient alternative method to the analytical solutions that need time.

Adaptive Analysis of Multilayered Composite and Sandwich Plates (적층복합재료 및 샌드위치 판의 적응해석)

  • 박진우;김용협
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.224-227
    • /
    • 2001
  • Adaptive analysis of multilayered composite and sandwich plates is carried out. The adaptive analysis is based on a finite element error form, which measures the difference between the through-the-thickness distribution of finite element displacement and the actual displacement. The region where the error-measure exceeds the prescribed admitted error value, the finite element mesh locally refined in the thickness direction using the mesh superposition technique. Several numerical tests are conducted to validate the effectiveness of the current approach for adaptive analysis of laminated plates.

  • PDF

Application of the Taguchi Method to the Analysis of the Numerical Parameters Influencing Springback Characteristics (스프링백 특성에 영향을 미치는 수치변수의 분석을 위한 다구치 실험계획법의 응용)

  • Kim, Hyung-Jong;Jeon, Tae-Bo
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.211-218
    • /
    • 2000
  • It is desirable but difficult to predict springback quantitatively and accurately for successful tool and process design in sheet stamping operations. The result of springback analysis by the finite element method (FEM) is sensitively influenced by numerical factors such as blank element size, number of integration points, punch velocity, contact algorithm, etc. In the present work, a parametric study by Taguchi method is performed in order to evaluate the influence of numerical factors on the result of springback analysis quantitatively and to obtain the combination of numerical factors which gives the best approximation to experimental data. Since springback is determined by the residual stress after forming process, it is important to evaluate stress distribution accurately. The oscillation in the time history curve of stress obtained by the dynamic-explicit finite element method says that the stress solution at termination time is in very unstable state. Therefore, a variability study is also carried out in this study in order to assess the stability of implicit springback analysis starting from the stress solution by explicit forming simulation. The U-draw bending process, one of the NUMISHEET '93 benchmark problems, is adopted as an application model because it is most popular one for evaluating the springback characteristic.

  • PDF

Vibration of Beams Induced by Wall Pressure Fluctuation in Turbulent Boundary Layer Using Numerical Approaches (수치 해석을 이용한 난류 경계층 내 벽면 변동 압력을 받는 보의 진동 해석)

  • Ryue, Jungsoo;Kim, Eunbi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.698-706
    • /
    • 2013
  • Structural vibration induced by excitation forces under turbulent boundary layer is investigated in terms of the numerical analysis in this paper. Since the responses of structures excited by the wall pressure fluctuation(WPF) are described by the power spectral density functions, they are calculated and reviewed theoretically for finite and infinite length beams. For the use of numerical approaches, the WPF needs to be discretized but conventional finite element method is not much effective for that purpose because the WPF lose the spatial correlation characteristics. As an alternative numerical technique for WPF modelling, a wavenumber domain finite element approach, called waveguide finite element method, is examined here for infinite length beams. From the comparison between the numerical and theoretical results, it was confirmed that the WFE method can effectively and easily cope with the excitation from WPF and hence the suitable approach.

Rational finite element method for plane orthotropic elastic problems

  • Mao, Ling;Yao, Weian;Gao, Qiang;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.923-937
    • /
    • 2014
  • The rational finite element method is different from the standard finite element method, which is constructed using basic solutions of the governing differential equations as interpolation functions in the elements. Therefore, it is superior to the isoparametric approach because of its obvious physical meaning and accuracy; it has successfully been applied to the isotropic elasticity problem. In this paper, the formulation of rational finite elements for plane orthotropic elasticity problems is deduced. This method is formulated directly in the physical domain with full consideration of the requirements of the patch test. Based on the number of element nodes and the interpolation functions, different approaches are applied with complete polynomial interpolation functions. Then, two special stiffness matrixes of elements with four and five nodes are deduced as a representative application. In addition, some typical numerical examples are considered to evaluate the performance of the elements. The numerical results demonstrate that the present method has a high level of accuracy and is an effective technique for solving plane orthotropic elasticity problems.

Wave Scattering Analysis of Scatterers Submerged in Water by Using a Hybrid Numerical Approach (수중 산란체의 수치적 산란해석)

  • 김재환;김세환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.84-92
    • /
    • 2000
  • In this paper, numerical scattering analysis for submerged scatterers is performed using finite and infinite elements. Unbounded domain is truncated into finite domain and finite elements are used in the domain. Infinite elements, So called Infinite Wave Envelope Elements (IWEE) which possess wave-like behavior, are used to take into account the infinite domain on the truncated boundary Scattering from rigid sphere is taken as an example and the effects of the order and mesh size of finite elements, size of finite element model and the order of IWEE are investigated. Quadratic finite element, refined mesh and higher order IWEE are recommended to improve the non-reflection boundary condition in the numerical scattering analysis.

  • PDF

Finite element analysis of flow with moving free surface by volume of fluid method (VOF 방법에 의한 이동하는 자유표면이 존재하는 유동의 유한요소 해석)

  • Sin, Su-Ho;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1230-1243
    • /
    • 1997
  • A numerical technique for simulating incompressible viscous flow with free surface is presented. The flow field is obtained by penalty finite element formulation. In this work, a modified volume of fluid (VOF) method which is compatible with 4-node element is proposed to track the moving free surface. This scheme can be applied to irregular mesh system, and can be easily extended to three dimensional geometries. Numerical analyses were done for two benchmark examples, namely the broken dam problem and the solitary wave propagation problem. The numerical results were in close agreement with the existing data. Illustrative examples were studied to show the effectiveness of the proposed numerical scheme.