• Title/Summary/Keyword: finite element formulations

검색결과 185건 처리시간 0.021초

Transient response analysis of tapered FRP poles with flexible joints by an efficient one-dimensional FE model

  • Saboori, Behnam;Khalili, Seyed Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.243-259
    • /
    • 2016
  • This research develops a finite element code for the transient dynamic analysis of tapered fiber reinforced polymer (FRP) poles with hollow circular cross-section and flexible joints used in power transmission lines. The FRP poles are modeled by tapered beam elements and their flexible joints by a rotational spring. To solve the time equations of transient dynamic analysis, precise time integration method is utilized. In order to verify the utilized formulations, a typical jointed FRP pole under step, triangular and sine pulses is analyzed by the developed finite element code and also ANSYS commercial finite element software for comparison. Thereafter, the effect of joint flexibility on its dynamic behavior is investigated. It is observed that by increasing the joint stiffness, the amplitude of the pole tip deflection history decreases, and the time of occurrence of the maximum deflection is earlier.

A Study on the Stochastic Finite Element Method for Dynamic Problem of Nonlinear Continuum

  • Wang, Qing;Bae, Dong-Myung
    • Journal of Ship and Ocean Technology
    • /
    • 제12권2호
    • /
    • pp.1-15
    • /
    • 2008
  • The main idea of this paper introduce stochastic structural parameters and random dynamic excitation directly into the dynamic functional variational formulations, and developed the nonlinear dynamic analysis of a stochastic variational principle and the corresponding stochastic finite element method via the weighted residual method and the small parameter perturbation technique. An interpolation method was adopted, which is based on representing the random field in terms of an interpolation rule involving a set of deterministic shape functions. Direct integration Wilson-${\theta}$ Method was adopted to solve finite element equations. Numerical examples are compared with Monte-Carlo simulation method to show that the approaches proposed herein are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.

Finite element formulations for free field one-dimensional shear wave propagation

  • Sun-Hoon Kim;Kwang-Jin Kim
    • Earthquakes and Structures
    • /
    • 제26권2호
    • /
    • pp.163-174
    • /
    • 2024
  • Dynamic equilibrium equations for finite element analysis were derived for the free field one-dimensional shear wave propagation through the horizontally layered soil deposits with the elastic half-space. We expressed Rayleigh's viscous damping consisting of mass and stiffness proportional terms. We considered two cases where damping matrices are defined in the total and relative displacement fields. Two forms of equilibrium equations are presented; one in terms of total motions and the other in terms of relative motions. To evaluate the performance of new equilibrium equations, we conducted two sets of site response analyses and directly compared them with the exact closed-form frequency domain solution. Results show that the base shear force as earthquake load represents the simpler form of equilibrium equation to be used for the finite element method. Conventional finite element procedure using base acceleration as earthquake load predicts exact solution reasonably well even in soil deposits with unrealistically high damping.

A New Approach for the Derivation of a Discrete Approximation Formula on Uniform Grid for Harmonic Functions

  • Kim, Philsu;Choi, Hyun Jung;Ahn, Soyoung
    • Kyungpook Mathematical Journal
    • /
    • 제47권4호
    • /
    • pp.529-548
    • /
    • 2007
  • The purpose of this article is to find a relation between the finite difference method and the boundary element method, and propose a new approach deriving a discrete approximation formula as like that of the finite difference method for harmonic functions. We develop a discrete approximation formula on a uniform grid based on the boundary integral formulations. We consider three different boundary integral formulations and derive one discrete approximation formula on the uniform grid for the harmonic function. We show that the proposed discrete approximation formula has the same computational molecules with that of the finite difference formula for the Laplace operator ${\nabla}^2$.

  • PDF

피에조콘 시험의 유한요소 해석 II (Finite Element Analysis of Piezocone Test II)

  • 김대규;김낙경
    • 한국지반공학회논문집
    • /
    • 제16권4호
    • /
    • pp.191-199
    • /
    • 2000
  • 본 연구에서는 피에조콘 시험의 유한요소해석을 수행하였다. 이를 위하여 점탄소성 bounding surface 모델, 가상일의 방정식(virtual work equation) 및 theory of mixtures를 Updated Lagrangian reference frame에서 formulation하였다. 결과적으로 구성된 유한요소 formulation을 컴퓨터 프로그래밍 하였으며 유한요소해석에서 얻은 콘 저항치, 과잉간극수압 및 간극수압소산 등의 결과를 실험치와 비교 분석하였으며 피에조콘 주변의 응력, 변형율 및 과잉간극수압의 contour를 유한요소해석에서 구하여 이를 고찰하였다. 비등방성 및 점성이 추가된 구성모델을 사용함으로서 응력의 비등방성 및 관입속도를 효과적으로 simulation할 수 있었다. 유한요소 Formulation 과정은 'I' 결과는 'II'에서 설명된다.

  • PDF

Albedo형 경계조건을 가진 다군확산문제에 대한 유한요소해 (A Finite Element Solution to the Group Diffusion Problems with Albedo-Type Boundary Conditions)

  • Kun Joong Yoo;Chang Hyo Kim;Chang Hyun Chung
    • Nuclear Engineering and Technology
    • /
    • 제14권4호
    • /
    • pp.178-185
    • /
    • 1982
  • 중성자 다군 확산 방정식의 해를 구하기 위하여 albedo형 경계조건을 Hermite 3차 다항식에 의거한 유한요소법과 결합하였다. 중성자 확산문제에 흔히 이용되는 확산방정식의 weak form을 경계조건과 일치하도록 수정하였으며 또한 경계면에 접한 node영역에서의 요소함수 또한 수정 정의하였다. 수정된 유한요소법의 수치계산상의 효율성을 조사할 목적으로 2차원 ZION 가압경수형 원자로문제를 시험계산하고 그 결과를 기존의 다른 계산결과와 비교하였다.

  • PDF

Multiscale analysis using a coupled discrete/finite element model

  • Rojek, Jerzy;Onate, Eugenio
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.1-31
    • /
    • 2008
  • The present paper presents multiscale modelling via coupling of the discrete and finite element methods. Theoretical formulation of the discrete element method using spherical or cylindrical particles has been briefly reviewed. Basic equations of the finite element method using the explicit time integration have been given. The micr-macro transition for the discrete element method has been discussed. Theoretical formulations for macroscopic stress and strain tensors have been given. Determination of macroscopic constitutive properties using dimensionless micro-macro relationships has been proposed. The formulation of the multiscale DEM/FEM model employing the DEM and FEM in different subdomains of the same body has been presented. The coupling allows the use of partially overlapping DEM and FEM subdomains. The overlap zone in the two coupling algorithms is introduced in order to provide a smooth transition from one discretization method to the other. Coupling between the DEM and FEM subdomains is provided by additional kinematic constraints imposed by means of either the Lagrange multipliers or penalty function method. The coupled DEM/FEM formulation has been implemented in the authors' own numerical program. Good performance of the numerical algorithms has been demonstrated in a number of examples.

Static and dynamic analysis of circular beams using explicit stiffness matrix

  • Rezaiee-Pajand, Mohammad;Rajabzadeh-Safaei, Niloofar
    • Structural Engineering and Mechanics
    • /
    • 제60권1호
    • /
    • pp.111-130
    • /
    • 2016
  • Two new elements with six degrees of freedom are proposed by applying the equilibrium conditions and strain-displacement equations. The first element is formulated for the infinite ratio of beam radius to thickness. In the second one, theory of the thick beam is used. Advantage of these elements is that by utilizing only one element, the exact solution will be obtained. Due to incorporating equilibrium conditions in the presented formulations, both proposed elements gave the precise internal forces. By solving some numerical tests, the high performance of the recommended formulations and also, interaction effects of the bending and axial forces will be demonstrated. While the second element has less error than the first one in thick regimes, the first element can be used for all regimes due to simplicity and good convergence. Based on static responses, it can be deduced that the first element is efficient for all the range of structural characteristics. The free vibration analysis will be performed using the first element. The results of static and dynamic tests show no deficiency, such as, shear and membrane locking and excessive stiff structural behavior.

분할된 ALE 방법에 의한 평금형 열간압출의 3차원 유한요소해석 (Three-dimensional finite element analysis of hot square die extrusion by using split ALE method)

  • 강연식;양동열
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1912-1920
    • /
    • 1997
  • In the analysis of metal forming process, ALE(Arbitrary Lagrangian Eulerian) finite element methods have been increasingly used for the capability to control mesh independently from material flow. The methods can be divided into two groups i.e., coupled and split formulations. In the present work, the split ALE formulation is used for computational efficiency. A split ALE finite element method developed for rigid-viscoplastic materials and applied to the analysis of hot square die extrusion. Since thermal state greatly affects the product quality, an ALE scheme for temperature analysis is also presented. As computational examples, profile shapes as square and cross-like sections are chosen.

안정화된 유한요소법을 이용한 진동하는 2차원 물체 주의 유동해석 (A STABILZED FINITE ELEMENT COMPUTATION OF FLOW AROUND OSCILLATING 2D BODIES)

  • 안형택;라술 라힐
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.289-294
    • /
    • 2010
  • Numerical stud of an oscillating body in incompressible fluid is performed. Stabilized finite element method comprising of Streamline-Upwind/Petrov-Galerkin (SUPG) and Pressure-Stabilizing/Petrov-Galerkin (PSPG) formulations of linear triangular elements was employed to solve 2D incompressible Navier-Stokes equations whereas the motion of the body was considered by incorporating the arbitrary Langrangian-Eulerian(ALE) formulation. An algebraic moving mesh strategy is utilized for obtaining body conforming mesh deformation at each time step. Two tests cases, namely motion of a circular cylinder and of an airfoil in incompressible flow were analyzed. The model is first validated against the stationary cases and then the capability to handle moving boundaries is demonstrated.

  • PDF